[zurück] | 5.23. Traub-Ostrowski Methode |
[vor] |
Die Traub-Ostrowski Fraktale [9, 10] werden nach folgender Formel berechnet. Zur Berechnung wird neben der Funktion f(zn) auch die erste Ableitung f '(zn) benötigt. Hier habe ich mit yn etwas die Schreibweise der Formeln geändert.
mit
f(z) = z2 - 1
Nullstellen:
z1 = -1,0
z2 = 1,0
Die folgende Abbildung zeigt einen Bereich real [-2,5 bis 2,5] und imaginär [-2,5 bis 2,5]. Bei einem Polynom mit nur zwei Nullstellen ist das Bild trivial.
f(z) = z3 - 1
Nullstellen:
z1 = -0,5 + 0,866025403784i
z2 = -0,5 - 0,866025403784i
z3 = 1,0 + 0,0i
Die folgende Abbildung zeigt einen Bereich real [-2,5 bis 2,5] und imaginär [-2,5 bis 2,5].
f(z) = z4 - 5 z2 + 4
Nullstellen:
z1 = 1
z2 = -1
z3 = 2
z4 = -2
Die folgende Abbildung zeigt einen Bereich real [-2,5 bis 2,5] und imaginär [-2,5 bis 2,5].
Die folgende Abbildung zeigt einen Bereich real [-0,25 bis 0,25] und imaginär [-0,25 bis 0,25].
Die folgende Abbildung zeigt einen Bereich real [1,520 bis 1,585] und imaginär [-0,0325 bis 0,0325].
Die folgende Abbildung zeigt einen Bereich real [1,543 bis 1,545] und imaginär [-0,001 bis 0,001].
Die folgende Abbildung zeigt einen Bereich real [1,543578 bis 1,543600] und imaginär [-0,000011 bis 0,000011].
[zurück] | [Inhaltsverzeichnis] | [vor] |