[zurück]

5.58. Neta Methode

[vor]

Die Neta Fraktale [44, 54, 56] werden nach folgender Formel berechnet. Zur Berechnung wird neben der Funktion f(zn) auch die erste Ableitung f '(zn) benötigt.

mit

und

f(z) = z2 - 1

Nullstellen:
z1 = -1,0
z2 = 1,0

Die folgende Abbildung zeigt einen Bereich real [-2,5 bis 2,5] und imaginär [-2,5 bis 2,5].

Die folgende Abbildung zeigt einen Bereich real [-0,25 bis 0,25] und imaginär [-0,25 bis 0,25].

Die folgende Abbildung zeigt einen Bereich real [-0,5 bis 0,5] und imaginär [0,9 bis 1,9].

f(z) = z3 - 1

Nullstellen:
z1 = -0,5 + 0,866025403784i
z2 = -0,5 - 0,866025403784i
z3 = 1,0 + 0,0i

Die folgende Abbildung zeigt einen Bereich real [-2,5 bis 2,5] und imaginär [-2,5 bis 2,5].

f(z) = z3 - z

Nullstellen:
z1 = 1
z2 = 0
z3 = -1

Die folgende Abbildung zeigt einen Bereich real [-2,5 bis 2,5] und imaginär [-2,5 bis 2,5].

f(z) = z4 - 5 z2 + 4

Nullstellen:
z1 = 1
z2 = -1
z3 = 2
z4 = -2

Die folgende Abbildung zeigt einen Bereich real [-2,5 bis 2,5] und imaginär [-2,5 bis 2,5].

Die folgende Abbildung zeigt einen Bereich real [-0,4 bis 0,4] und imaginär [-0,4 bis 0,4].

Die folgende Abbildung zeigt einen Bereich real [0,188 bis 0,221] und imaginär [-0,0165 bis 0,0165].


[zurück] [Inhaltsverzeichnis] [vor]