[zurück] | 5.59. Kou Methode |
[vor] |
Die Kou Fraktale [44] werden nach folgender Formel berechnet. Zur Berechnung wird neben der Funktion f(zn) auch die erste Ableitung f '(zn) benötigt.
mit
und
f(z) = z2 - 1
Nullstellen:
z1 = -1,0
z2 = 1,0
Die folgende Abbildung zeigt einen Bereich real [-2,5 bis 2,5] und imaginär [-2,5 bis 2,5]. Bei einem Polynom mit nur zwei Nullstellen ist das Bild trivial.
f(z) = z3 - 1
Nullstellen:
z1 = -0,5 + 0,866025403784i
z2 = -0,5 - 0,866025403784i
z3 = 1,0 + 0,0i
Die folgende Abbildung zeigt einen Bereich real [-2,5 bis 2,5] und imaginär [-2,5 bis 2,5].
Die folgende Abbildung zeigt einen Bereich real [-0,665 bis -0,639] und imaginär [-0,013 bis 0,013].
f(z) = z4 - 5 z2 + 4
Nullstellen:
z1 = 1
z2 = -1
z3 = 2
z4 = -2
Die folgende Abbildung zeigt einen Bereich real [-2,5 bis 2,5] und imaginär [-2,5 bis 2,5].
Die folgende Abbildung zeigt einen Bereich real [-0,33 bis 0,33] und imaginär [-0,33 bis 0,33].
Die folgende Abbildung zeigt einen Bereich real [1,475 bis 1,585] und imaginär [-0,055 bis 0,055].
f(z) = z3 - z
Nullstellen:
z1 = 1
z2 = 0
z3 = -1
Die folgende Abbildung zeigt einen Bereich real [-2,5 bis 2,5] und imaginär [-2,5 bis 2,5].
Die folgende Abbildung zeigt einen Bereich real [0,44 bis 0,51] und imaginär [-0,035 bis 0,035].
Die folgende Abbildung zeigt einen Bereich real [0,4598 bis 0,4614] und imaginär [-0,0008 bis 0,0008].
[zurück] | [Inhaltsverzeichnis] | [vor] |