[zurück] | 5.37. Fang Ni Chen III Methode |
[vor] |
Die Fang Ni Chen III Fraktale [1] habe ich in der Publikation "Three Modifies Efficient
Iterative Methods for Non-linear Equations" von Liang Fang, Lili Ni und Rui Chen gefunden. Ich habe die Formeln einfach nach
den Autoren benannt.
Sie werden nach folgender Formel berechnet. Zur Berechnung wird neben der Funktion f(zn) auch
die erste Ableitung f '(zn) benötigt, die Berechnung erfolgt in drei Stufen.
f(z) = z2 - 1
Nullstellen:
z1 = -1,0
z2 = 1,0
Die folgende Abbildung zeigt einen Bereich real [-2,5 bis 2,5] und imaginär [-2,5 bis 2,5]. Auch bei einem Polynom mit nur zwei Nullstellen gibt es eine Feinstruktur.
Die folgende Abbildung zeigt einen Bereich real [-0,6 bis 0,6] und imaginär [-0,6 bis 0,6].
f(z) = z2 - z - 2
Nullstellen:
z1 = -1,0
z2 = 2,0
Die folgende Abbildung zeigt einen Bereich real [-2,5 bis 2,5] und imaginär [-2,5 bis 2,5]. Auch bei einem Polynom mit nur zwei Nullstellen gibt es eine Feinstruktur.
f(z) = z4 - 2 z3 - 3 z2 + 4 z + 4
Nullstellen:
z1,2 = -1,0
z3,4 = 2,0
Die folgende Abbildung zeigt einen Bereich real [-2,5 bis 2,5] und imaginär [-2,5 bis 2,5]. Die doppelten Nullstellen führen zu einer Veränderung der Feinstruktur.
f(z) = z3 - 1
Nullstellen:
z1 = -0,5 + 0,866025403784i
z2 = -0,5 - 0,866025403784i
z3 = 1,0 + 0,0i
Die folgende Abbildung zeigt einen Bereich real [-2,5 bis 2,5] und imaginär [-2,5 bis 2,5].
f(z) = z3 - z
Nullstellen:
z1 = 1
z2 = 0
z3 = -1
Die folgende Abbildung zeigt einen Bereich real [-2,5 bis 2,5] und imaginär [-2,5 bis 2,5].
f(z) = z4 - 5 z2 + 4
Nullstellen:
z1 = 1
z2 = -1
z3 = 2
z4 = -2
Die folgende Abbildung zeigt einen Bereich real [-7,5 bis 7,5] und imaginär [-7,5 bis 7,5].
Die folgende Abbildung zeigt einen Bereich real [-2,5 bis 2,5] und imaginär [-2,5 bis 2,5].
Die folgende Abbildung zeigt einen Bereich real [-0,65 bis 0,65] und imaginär [-0,65 bis 0,65].
Die folgende Abbildung zeigt einen Bereich real [0,255 bis 0,345] und imaginär [-0,045 bis 0,045]. In der blauen Zone gibt es eine Insel.
Die folgende Abbildung zeigt einen Bereich real [1,25 bis 2,05] und imaginär [-0,4 bis 0,4].
[zurück] | [Inhaltsverzeichnis] | [vor] |