[zurück]

4. Literatur

[vor]
1. Chaos blog - JLS
3-cells CNN chaotic system
http://jlswbs.blogspot.de/2012/04/3-cells-cnn.html
2. Chaos blog - JLS
Arneodo chaotic system
http://jlswbs.blogspot.de/2012/03/arneodo.html
3. Chaos blog - JLS
Sprott-Linz S chaotic attractor
http://jlswbs.blogspot.de/2012/03/sprott-linz-s.html
4. Chaos blog - JLS
Sprott-Linz R chaotic attractor
http://jlswbs.blogspot.de/2011/10/sprott-r.html
5. Chaos blog - JLS
Sprott-Linz Q chaotic attractor
http://jlswbs.blogspot.de/2012/03/sprott-linz-q.html
6. Chaos blog - JLS
Sprott-Linz P chaotic attractor
http://jlswbs.blogspot.de/2012/03/sprott-linz-p.html
7. Chaos blog - JLS
Sprott-Linz O chaotic attractor
http://jlswbs.blogspot.de/2012/03/sprott-linz-o.html
8. Chaos blog - JLS
Sprott-Linz N chaotic attractor
http://jlswbs.blogspot.de/2011/10/sprott-n.html
9. Chaos blog - JLS
Sprott-Linz M chaotic attractor
http://jlswbs.blogspot.de/2012/03/sprott-linz-m.html
10. Chaos blog - JLS
Sprott-Linz L chaotic attractor
http://jlswbs.blogspot.de/2012/03/sprott-linz-l.html
11. Chaos blog - JLS
Sprott-Linz K chaotic attractor
http://jlswbs.blogspot.de/2012/03/sprott-linz-k.html
12. Chaos blog - JLS
Sprott-Linz J chaotic attractor
http://jlswbs.blogspot.de/2012/02/sprott-linz-j.html
13. Chaos blog - JLS
Sprott-Linz I chaotic attractor
http://jlswbs.blogspot.de/2012/02/sprott-linz-i.html
14. Chaos blog - JLS
Sprott-Linz H chaotic attractor
http://jlswbs.blogspot.de/2012/02/sprott-linz-h.html
15. Chaos blog - JLS
Sprott-Linz G chaotic attractor
http://jlswbs.blogspot.de/2012/02/sprott-linz-g.html
16. Chaos blog - JLS
Sprott-Linz F chaotic attractor
http://jlswbs.blogspot.de/2012/02/sprott-linz-f.html
17. Chaos blog - JLS
Sprott-Linz E chaotic attractor
http://jlswbs.blogspot.de/2011/10/sprott-e.html
18. Chaos blog - JLS
Sprott-Linz D chaotic attractor
http://jlswbs.blogspot.de/2011/10/sprott-d.html
19. Chaos blog - JLS
Sprott-Linz C chaotic attractor
http://jlswbs.blogspot.de/2012/02/sprott-linz-c.html
20. A New Three-Scroll Unified Chaotic System Coined
Lin Pan, Wuneng Zhou, Jian’an Fang, Dequan Li
International Journal of Nonlinear Science, Vol.10(2010) No.4,pp.462-474
http://www.internonlinearscience.org/upload/papers/20110618025420887.pdf
21. Chaos blog - JLS
Sprott-Linz B chaotic attractor
http://jlswbs.blogspot.de/2012/02/sprott-linz-b.html
22. Chaos blog - JLS
Sprott-Linz A chaotic attractor
http://jlswbs.blogspot.de/2012/02/linz-sprott.html
23. A NEW CHAOTIC SYSTEM AND BEYOND: THE GENERALIZED LORENZ-LIKE SYSTEM
JINHU LÜ, GUANRONG CHEN, DAIZHAN CHENG
International Journal of Bifurcation and Chaos, Vol. 14, No. 5 (2004) 1507-1537
http://lsc.amss.ac.cn/~ljh/04LCC.pdf
24. Chaos blog - JLS
Thomas cyclically symetric attractor
http://jlswbs.blogspot.de/2011/09/thomas.html
25. Chaos blog - JLS
Chen-Celikovsky chaotic attractor
http://jlswbs.blogspot.de/2011/10/chen-celikovsky.html
26. A NEW CHAOTIC ATTRACTOR COINED
JINHU LÜ, GUANRONG CHEN
International Journal of Bifurcation and Chaos, Vol. 12, No. 3 (2002) 659-661
http://lsc.amss.ac.cn/~ljh/02LC.pdf
27. Chaos blog - JLS
Shimizu-Morioka chaotic attractor
http://jlswbs.blogspot.de/2011/10/shimizu-morioka.html
28. 1980 The Shimizu-Morioka system
T. Shimizu & N. Morioka
ATOMOSYD
http://www.atomosyd.net/spip.php?article75
29. Chaos blog - JLS
Nose-Hoover chaotic attractor
http://jlswbs.blogspot.de/2011/10/nose-hoover.html
30. Chaos blog - JLS
Strizhak-Kawczynski chaotic oscillator
http://jlswbs.blogspot.de/2011/10/strizhak-kawczynski.html
31. Slow manifold structure and the emergence of mixed-mode oscillations
Andrei Goryachev, Peter Strizhak, Raymond Kapral
J. Chem. Phys., Vol. 107, No. 8, 22 August 1997
http://www.biology.ed.ac.uk/research/groups/goryachev/Papers/jcp97.pdf
32. Chaos blog - JLS
Rayleigh-Benard chaotic oscillator
http://jlswbs.blogspot.de/2011/10/rayleigh-benard.html
33. Chaos blog - JLS
Sakarya chaotic attractor
http://jlswbs.blogspot.de/2011/10/sakarya.html
34. Chaos blog - JLS
Aizawa chaotic attractor
http://jlswbs.blogspot.de/2011/10/aizawa.html
35. Chaos blog - JLS
Newton-Leipnik attractor
http://jlswbs.blogspot.de/2011/10/newton-leipnik.html
36. Adaptive control and synchronization of the Newton-Leipnik systems
Xuedi Wang, Chao Ge
Journal of Information and Computing Science, Vol. 3, No. 4, 2008, pp. 281-289
http://www.worldacademicunion.com/journal/1746-7659JIC/jicvol3no4paper04.pdf
37. Chaos blog - JLS
Burke-Shaw chaotic attractor
http://jlswbs.blogspot.de/2011/10/burke-shaw.html
38. 1981 The Burke & Shaw system
Bill Burke & Robert Shaw
ATOMOSYD
http://www.atomosyd.net/spip.php?article33
39. Chaos blog - JLS
Rucklidge chaotic attractor
http://jlswbs.blogspot.de/2011/10/rucklidge.html
40. Description of strange attractors using invariants of phase-plane
DUMITRU DELEANU
http://www.wseas.us/e-library/conferences/2011/Iasi/DYMANOW/DYMANOW-17.pdf
41. Chaos blog - JLS
Halvorsen chaotic attractor
http://jlswbs.blogspot.de/2011/10/halvorsen.html
42. SPROTT / lorenz
EC JOURNAL . Winter 2008
http://sprott.physics.wisc.edu/lorenz.pdf
43. Chaos blog - JLS
Hadley chaotic circulation
http://jlswbs.blogspot.de/2011/10/hadley.html
44. A Novel Strange Attractor with a Stretched Loop
Safieddine Bouali
University of Tunis, Management Institute, Department of Quantitative Methods & Economics
http://arxiv.org/ftp/arxiv/papers/1204/1204.0045.pdf
45. Feedback loop in extended Van der Pol`s equation applied to an economic model of cycles
Safieddine Bouali
International Journal of Bifurkation and Chaos, Vol. 9, No. 4 (1999) 745 - 756
http://s1.e-monsite.com/2009/08/29/80052934bouali-ijbc-pdf.pdf
46. Chaos Control and Projective Synchronization of a Chaotic Chen-Lee System
Yin Li, Biao Li1
CHINESE JOURNAL OF PHYSICS VOL. 47, NO. 3 JUNE 2009
47. Poincar´e sections for a new three-dimensional toroidal attractor
Christophe Letellier & Robert Gilmore
http://www.physics.drexel.edu/~bob/Papers/Torochaos.pdf
48. A New Finance Chaotic Attractor
Guoliang Cai,Juanjuan Huang
International Journal of Nonlinear Science, Vol. 3 (2007) No. 3, pp. 213-220
http://www.internonlinearscience.org/upload/papers/20110308103218810.pdf
49. Tamari attractor
Wikipedia
http://en.wikipedia.org/wiki/Tamari_attractor
50. Tamari attractor
Ben Tamari
http://www.bentamari.com/attractors.html
51. Computer Simulation on the Gumowski-Mira Transformation
Kenji OTSUBO, Masakazu WASHIDA, Takao ITOH, Kazuo KATSUURA and Masaki HAYASHI
http://www.scipress.org/journals/forma/pdf/1502/15020121.pdf
52. Mira Fractal
Wolfram MathWorld
http://mathworld.wolfram.com/MiraFractal.html
53. Attractors: Nonstrange to Chaotic
Robert L. V. Taylor; The College of Wooster
http://www.siam.org/students/siuro/vol4/S01079.pdf
54. FractMus Math
Gustavo Diaz-Jerez
http://www.gustavodiazjerez.com/gdj/?cat=15
55. Shilnikov's Saddle-Node Bifurcation
Sparrow, Colin; Glendinning, Paul
HP Labs Technical Reports
http://www.hpl.hp.com/techreports/96/HPL-BRIMS-96-07.html
56. Parameter-sweeping techniques for temporal dynamics of neuronal systems: Hindmarsh-Rose model
Roberto Barrio, Andrey Shilnikov
http://131.96.40.35/hm_chaos.pdf
57. Hindmarsh–Rose model
Wikipedia
http://en.wikipedia.org/wiki/Hindmarsh%E2%80%93Rose_model
58. Determining the flexibility of regular and chaotic attractors
Marko Marhl, Matjaz Perc
Chaos, Solitons and Fractals 28 (2006) 822–833
http://www.matjazperc.com/publications/ChaosSolitonsFractals_28_822.pdf
59. Short Option S15: Chaos, Chance and Predictability
Prof. P. L. Read and Dr M. R. Allen
The University of Oxford Department of Physics
http://www.atm.ox.ac.uk/user/read/chaos/lect5.pdf
60. On the Dynamics of a New Simple 2-D Rational Discrete Mapping
Elhadj, Zeraoulia; Sprott, J. C.
http://sprott.physics.wisc.edu/pubs/paper310.htm
61. A NEW CHAOTIC ATTRACTOR FROM 2D DISCRETE MAPPING VIA BORDER-COLLISION PERIOD-DOUBLING SCENARIO
Elhadj, Zeraoulia
http://emis.matem.unam.mx/journals/HOA/DDNS/Volume2005_3/238.pdf
62. Cellular Neural Networks, Multi-Scroll Chaos And Synchronization
Müstak E. Yalcin, Johan A. K. Suykens, Joos Vandewalle
World Scientific Series on Nonlinear Science Series A: Volume 50
http://books.google.de/books/about/Cellular_Neural_Networks_Multi_Scroll_Ch.html?hl=de&id=E_Nk5UQoE94C
63. A New Four-Scroll Chaotic Attractor Consisted of Two-Scroll Transient Chaotic and Two-Scroll Ultimate Chaotic
Yuhua Xu, Bing Li, Yuling Wang, Wuneng Zhou and Jian-an Fang
Hindawi Publishing Corporation; Mathematical Problems in Engineering; Volume 2012, Article ID 438328, 12 pages
http://www.hindawi.com/journals/mpe/2012/438328/ref/
64. A family of n-scroll hyperchaotic attractors and their realization
Simin Yu, Jinhu Lü, Guanrong Chen
Physics Letters A 364 (2007) 244–251
http://lsc.amss.ac.cn/~ljh/07YLC.pdf
65. Invariant Sets for Windows: Resonance Structures, Attractors, Fractals and Patterns
Albert D. Morozov, Timothy N. Dragunov, Olga V. Malysheva
World Scientific Series on Nonlinear Science, Series a
http://books.google.de/books
66. Chaos in Circuits and Systems
Guanrong Chen, Tetsushi Ueta, Tetsishi Ueta
World Scientific Series on Nonlinear Science, Series B
http://books.google.de/books
67. A Two-dimensional Discrete Mapping with Multifold Chaotic Attractors
Zeraoulia Elhadj, J. C. Sprott
Electronic Journal of Theoretical Physics; EJTP 5, No. 17 (2008) 111-124
http://sprott.physics.wisc.edu/pubs/paper308.htm
68. Fractals, Chaos
Paul Bourke
http://paulbourke.net/fractals/
69. Herrmann, Dietmar
Algorithmen für Fraktale und Chaostheorie
Addison Wesley, 1994
ISBN 3-89319-633-1
70. Positive Knots and Robinson's Attractor
Michael C. Sullivan, Southern Illinois University Carbondale
http://opensiuc.lib.siu.edu/math_articles/74/
71. Chaoscope.org
3D strange attractors rendering software
http://www.chaoscope.org/manual.htm
72. Study on the dynamical behaviors of a two-dimensional discrete system
Yinghui Gao, Bing Liu
Nonlinear Analysis 70 (2009) 4209-4216
http://n-vasegh.ir/Chaos/Ushiki_map.pdf
73. Ergodic theory of chaos and strange attractors
J.-P. Eckmann, D. Ruelle
http://www.ihes.fr/~ruelle/PUBLICATIONS/%5B81%5D.pdf
74. Chua's Equation With Cubic Nonlinearity (1996)
Anshan Huang , Ladislav Pivka , Chai Wah Wu , Martin Franz
Electronics Research Laboratory and Department of Electrical Engineering and Computer Sciences University of California, Berkeley
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.53.4863
75. Attractors of discrete dynamical systems
Discrete Dynamical Systems and Nonlinear Difference Equations
http://www.discretedynamics.net/Attractors/attractors.htm
76. Popcorn
Softology Tutorial
http://softology.com.au/tutorials/attractors2d/tutorial.htm
77. Pickover Attractors
FractInt
http://www.nahee.com/spanky/www/fractint/pickover.html
78. Analysis, nonlinear control, and chaos generator circuit of another strange chaotic system
Ihsan PEHLIVAN, Zhouchao WEI
Turk J Elec Eng & Comp Sci
http://journals.tubitak.gov.tr/havuz/elk-1103-14.pdf
79. BIFURCATION ANALYSIS OF THE QI 3-D FOUR-WING CHAOTIC SYSTEM
Yanxia Sun, Guoyuan Qi, Zenghui Wang, Barend Jacobus van Wyk
ACTA PHYSICA POLONICA B, Vol. 41 (2010)
http://th-www.if.uj.edu.pl/acta/vol41/pdf/v41p0767.pdf
80. THE DESIGN OF ADAPTIVE CONTROLLER AND SYNCHRONIZER FOR QI-CHEN SYSTEM WITH UNKNOWN PARAMETERS
Sundarapandian Vaidyanathan
International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.2, No.1, February 2012
http://airccse.org/journal/ijcsea/papers/2112ijcsea08.pdf
81. A new four-dimensional chaotic system
Chen Yong and Yang Yun-Qing
Chin. Phys. B Vol. 19, No. 12 (2010) 120510
http://faculty.ecnu.edu.cn/picture/article/202/38/44/0161a10f4b1f8813a86cb2bcb6df/66150550-4823-4061-a3ad-bfd2026325d4.pdf.x
82. Highly Complex Chaotic System with Piecewise Linear Nonlinearity and Compound Structures
Wimol San-Um, Banlue Srisuchinwong
JOURNAL OF COMPUTERS, VOL. 7, NO. 4, APRIL 2012
http://ojs.academypublisher.com/index.php/jcp/article/download/jcp070410411047/4679
83. A Novel Three Dimension Autonomous Chaotic System with a Quadratic Exponential Nonlinear Term
Fei Yu, Chunhua Wang
ETASR - Engineering, Technology & Applied Science Research Vol. 2, o. 2, 2012, 209-215
http://www.etasr.com/index.php/ETASR/article/download/86/119
84. Controllable V-Shape Multi-Scroll Butter y Attractor: System and Circuit Implementation
M. AFFAN ZIDAN, A. G. RADWAN, K. N. SALAMA
JOURNAL OF COMPUTERS, VOL. 7, NO. 4, APRIL 2012
http://archive.kaust.edu.sa/kaust/bitstream/10754/235271/1/V_Shape_Final.pdf
85. Designing modified projective synchronization for fractional order chaotic systems
Runzi Luo, Shucheng Deng, Zhengmin Wei
http://litis.univ-lehavre.fr/iccsaPeople/media/data/CSFOS-05.pdf
86. Automatic synthesis of 2D-n-scrolls chaotic systems by behavioral modeling
J. M. Munoz-Pacheco, E. Tlelo-Cuautle
Journal of Applied Research and Technology, 2009, Vol. 7, 5-14
http://www.doaj.org/doaj?func=abstract&id=865075
87. ACTIVE CONTROLLER DESIGN FOR THE GENERALIZED PROJECTIVE SYNCHRONIZATION OF THREE-SCROLL CHAOTIC SYSTEMS
Sarasu Pakiriswamy and Sundarapandian Vaidyanathan
International Journal of Advanced Information Technology (IJAIT) Vol. 2, No.1, February 2012
http://airccse.org/journal/IJAIT/papers/2112ijait04.pdf
88. n-DOUBLE SCROLL HYPERCUBES IN 1-D CNNs
J. A. K. SUYKENS, L. O. CHUA
International Journal of Bifurcation and Chaos, Vol. 7, No. 8 (1997) 1873-1885
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.128.6086
89. Multiscroll in coupled Lorenz oscillators
S.K.Dana, B.K. Singh, S.Chakraborty, J.Kurths, G.Osipov, R.C.Yadav, P.K.Roy, C.-K.Hu
National Conference on Nonlinear Systems and Dynamics (NCNSD)
http://www.ncnsd.org/proceedings/proceeding08/paper/10.pdf
90. A Family of n-Scroll Attractors from a Generalized Chua's Circuit
Johan A. K. Suykens , Anshan Huang , Leon O. Chua
National Conference on Nonlinear Systems and Dynamics (NCNSD)
http://130.203.133.150/viewdoc/similar;jsessionid=E6383228578535C0E22853418AC14CC9?doi=10.1.1.7.3191&type=cc
91. Synchronization of Identical and Non-identical 4-D Chaotic Systems via Lyapunov Direct Method
A. N. Njah, O.D. Sunday
International Journal of Nonlinear Science Vol.8(2009) No.1,pp. 3-10
http://www.worldacademicunion.com/journal/1749-3889-3897IJNS/IJNSVol08No1Paper01.pdf
92. MULTISCROLL IN COUPLED DOUBLE SCROLL TYPE OSCILLATORS
SYAMAL KUMAR DANA, BRAJENDRA K. SINGH, SATYABRATA.CHAKRABORTY, RAM CHANDRA YADAV, JÜRGEN KURTHS, GREGORY V. OSIPOV, PRODYOT KUMAR ROY, CHIN-KUN HU
International Journal of Bifurcation and Chaos, Vol. 18, No. 10 (2008) 2965-2980
http://www.phys.sinica.edu.tw/~statphys/publications/2008_full_text/S_K_Dana_IJBC_18_2965(2008).pdf
93. A Generic Framework for Robust Image Encryption Using Multiple Chaotic Flows
Gelli MBSS Kumar and V. Chandrasekaran
INTERNATIONAL JOURNAL OF COMPUTATIONAL COGNITION (HTTP://WWW.IJCC.US), VOL. 8, NO. 3, SEPTEMBER 2010
www.yangsky.us/ijcc/pdf/ijcc83/IJCC823.pdf
94. Dynamical Systems and Chaos
Henk Broer and Floris Takens
Johann Bernoulli Institute for Mathematics and Computer Science University of Groningen
http://www.math.rug.nl/~broer/pdf/nova.pdf
95. Chaos topology
Robert Gilmore et al. (2008), Scholarpedia, 3(7):4592
http://www.scholarpedia.org/article/Chaos_topology
96. Chaos blog - JLS
ACT chaotic attractor
http://jlswbs.blogspot.de/2011/10/act.html
97. Chaos blog - JLS
Lorenz-Mod1 chaotic attractor
http://jlswbs.blogspot.de/2011/11/lorenz-mod1.html
98. Chaos blog - JLS
Lorenz-Mod2 chaotic attractor
http://jlswbs.blogspot.de/2011/11/lorenz-mod2.html
99. Irregular Attractors
VADIM S. ANISHCHENKO and GALINA I. STRELKOVA
Discrete Dynamics in Nature and Society, Vol. 2, pp. 53-72
http://www.emis.de/journals/HOA/DDNS/2/153.pdf
100. THE SYNCHRONIZATION OF TWO FOUR-DIMENSIONAL CHAOTIC SYSTEMS WITH CUBIC NONLINEARITIES
Servilia OANCEA, Ioan GROSU, Andrei Victor OANCEA
Lucrari Stiintifice – vol. 53, Nr. 2/2010, seria Agronomie
http://www.revagrois.ro/PDF/2010_2_50.pdf
101. On bifurcations of the Lorenz attractor in the Shimizu-Morioka model
Andrey L. Shil'nikov
Physica D 62 (1993) 338-346
http://saddle.gsu.edu/research/shimizu.pdf
102. A New 3D Four-Wing Chaotic System with Cubic Nonlinearity and Its Circuit Implementation
LIU Xing-Yun
CHIN. PHYS. LETT. Vol. 26, No. 9 (2009) 090504
http://cpl.iphy.ac.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=41688
103. A novel four-wing chaotic attractor generated from a three-dimensional quadratic autonomous system
Dong En-Zeng, Chen Zai-Ping, Chen Zeng-Qiang, and Yuan Zhu-Zhi
Chinese Physics B, Vol 18 No 7, July 2009
http://iopscience.iop.org/1674-1056/18/7/010
104. ADAPTIVE HYBRID CHAOS SYNCHRONIZATION OF LORENZ-STENFLO AND QI 4-D CHAOTIC SYSTEMS WITH UNKNOWN PARAMETERS
Sundarapandian Vaidyanathan
International Journal in Foundations of Computer Science & Technology,Vol. 2, No.1, January 2012
http://airccse.org/journal/ijfcst/papers/2112ijfcst02.pdf
105. GLOBAL CHAOS SYNCHRONIZATION OF HYPERCHAOTIC QI AND HYPERCHAOTIC JHA SYSTEMS BY ACTIVE NONLINEAR CONTROL
Sundarapandian Vaidyanathan
International Journal of Information Sciences and Techniques (IJIST) Vol.2, No.3, May 2012
http://airccse.org/journal/IS/papers/2312ijist07.pdf
106. Cat Map
Wikipedia
http://en.wikipedia.org/wiki/Arnold%27s_cat_map
107. On Solving Coullet System by Differential Transformation Method
Mehmet Merdan, Ahmet Gökdogan and Vedat Suat Ertürk
Cankaya University Journal of Science and Engineering Volume 8 (2011), No. 1, 111-121
http://cujse.cankaya.edu.tr/archive/8_1/09_cujse_10051.pdf
108. A 3-D four-wing attractor and its analysis
Zenghui Wang, Yanxia Sun, Barend Jacobus van Wyk, Guoyuan Qi and Michael Antonie van Wyk
Brazilian Journal of Physics, vol. 39, no. 3, September, 2009
http://www.sbfisica.org.br/bjp/files/v39_547.pdf
109. Tent Map
Wikipedia
http://en.wikipedia.org/wiki/Tent_map
110. The Coupled Logistic Map: A Simple Model for the Effects of Spatial Heterogeneity on Population Dynamics
ALUN L. LLOYD
J. theor. Biol. (1995) 173, 217-230
http://www4.ncsu.edu/~allloyd/pdf_files/jtb_95.pdf
111. ON THE INTEGRABILITY OF A MUTHUSWAMY-CHUA SYSTEM
JAUME LLIBRE, CLAUDIA VALLS
Grup de Sistemes Dinàmics de la UAB
http://www.gsd.uab.cat/cgi-bin/download?ID=LliVal2011n.abstract.pdf-d9656c68d387b201c7063e7bda9aaabe.pdf;OD=LliVal2011n.abstract.pdf
112. TOPOLOGICAL ANALYSIS OF CHAOTIC SOLUTION OF A THREE-ELEMENT MEMRISTIVE CIRCUIT
JEAN-MARC GINOUX, CHRISTOPHE LETELLIER, LEON O. CHUA
International Journal of Bifurcation and Chaos, Vol. 20, No. 11 (2010) 3819–3827
http://www.researchgate.net/publication/220272267_Topological_Analysis_of_Chaotic_Solution_of_a_Three-Element_Memristive_Circuit/file/79e414ff1f564b1262.pdf
113. Chaotic Modelling and Simulation: Analysis of Chaotic Models, Attractors and Forms
Christos H. Skiadas, Charilaos Skiadas
CRC Press, ISBN-10: 142007900X
114. Java 1.1 Applet for the Sine Attractor
Home Page Barry G. Adams
Laurentian University
http://www.cs.laurentian.ca/badams/Attractors2D/SineApplet.html
115. Two Dimensional Maps - Equations
Chaos on the Web: Physics 161: Introduction to Chaos
Prof. Michael Cross, California Institute of Technology
http://www.cmp.caltech.edu/~mcc/Chaos_Course/Map2D_docs/Equations.html
116. Stability Properties of Nonhyperbolic Chaotic Attractors under Noise
Suso Kraut and Celso Grebogi
http://arxiv.org/pdf/nlin/0411064
117. Bifurcation Analysis, Chaos and Control in the Burgers Mapping
E. M. ELabbasy, H. N. Agiza, H. EL-Metwally, A. A. Elsadany
International Journal of Nonlinear Science, Vol.4(2007) No.3,pp.171-185
http://www.worldacademicunion.com/journal/1749-3889-3897IJNS/IJNSVol4No3Paper02.pdf
118. Antiphase synchronism in chaotic systems
Ling-Yuan Cao and Ying-Cheng Lai
PHYSICAL REVIEW E, VOLUME 58, NUMBER 1 JULY 1998
http://chaos1.la.asu.edu/~yclai/papers/PRE_98_CL.pdf
119. Intermittent Strange Nonchaotic Attractors in Quasiperiodically Forced Systems
Woochang Lim and Sang-Yoon Kim
Journal of the Korean Physical Society, Vol. 44, No. 3, March 2004, pp. 514-517
http://www.kps.or.kr/jkps/downloadPdf.asp?articleuid=%7B0C8761CA-188C-4867-88CF-D7E164BEE044%7D
120. Fractalization of a torus as a strange nonchaotic attractor
Takashi Nishikawa and Kunihiko Kaneko
PHYSICAL REVIEW E VOLUME 54, NUMBER 6 DECEMBER 1996
http://chaos.c.u-tokyo.ac.jp/papers/pr/nishikawa.pdf
121. Dynamics of Small Perturbations of Orbits on a Torus in a Quasiperiodically Forced 2D Dissipative Map
Alexey Yu. Jalnine, Sergey P. Kuznetsov, Andrew H. Osbaldestin
http://arxiv.org/abs/nlin/0506047
122. A GENERALIZED 3-D FOUR-WING CHAOTIC SYSTEM
ZENGHUI WANG, GUOYUAN QI, YANXIA SUN, MICHAEL ANTONIE VAN WYK, BAREND JACOBUS VAN WYK
Int. J. Bifurcation Chaos 19, 3841 (2009)
http://www.worldscientific.com/doi/abs/10.1142/S0218127409025171
123. AN AMPLITUDE-ADJUSTABLE FOUR-WING CHAOTIC ATTRACTOR AND ITS CIRCUIT DESIGN
CHUNBIAO LI, IHSAN PEHLIVAN, J.C. SPROTT
http://sprott.physics.wisc.edu/pubs/paper393.pdf
124. The Basic Properties of Zhou’s Attractor
Ummu Atiqah Mohd Roslan, Zabidin Salleh and Adem Kilicman
Proceeding of ICORAFSS 2009, 2-4 June 2009, The ZON Regency Hotel, Johor Bahru, Malaysia
http://zabidin.blog.umt.edu.my/files/2009/08/Zhous-Attractor.pdf
125. Non-existence of Shilnikov Chaos in Continuous-time Systems
Zeraoulia Elhadj and J. C. Sprott
http://sprott.physics.wisc.edu/pubs/paper357.pdf
126. Ontologies: On the Concepts of: Possibility, Possible, “Acaso”, Aleatorial and Chaos
Maria Odete Madeira, Carlos Pedro Gonçalves
http://fraclab.saclay.inria.fr/works/miscellaneous/Ontologies%20On%20the%20Concepts%20of%20Possibility-%20Possible-%20Acaso-%20Aleatorial%20and%20Chaos.pdf
127. Untersuchung der Klimavariabilität in NW Argentinien mit Hilfe der quantitativen Analyse von Recurrence Plots
Diplomarbeit Norbert Marwan
Lehrstuhl Theoretische Physik Institut für Physik und Astronomie der Universität Potsdam
http://www.recurrence-plot.tk/Diplomarbeit.Marwan.pdf
128. Rekurrenzplot
Wikipedia
http://de.wikipedia.org/wiki/Rekurrenzplot
129. Introduction to Recurrence Plots in Matlab
Professor Janet Wiles
School of Information Technology and Electrical Engineering University of Queensland
http://tdlc.ucsd.edu/events/sfi/Janet_Wiles_Recurrence_Plots_Lab.pdf
130. Recurrence Quantification Analysis of Nonlinear Dynamical Systems
Charles L. Webber, Jr. and Joseph P. Zbilut
http://www.nsf.gov/sbe/bcs/pac/nmbs/chap2.pdf
131. Recurrence plots for the analysis of complex systems
Norbert Marwan, M. Carmen Romano, Marco Thiel, Jürgen Kurths
Nonlinear Dynamics Group, Institute of Physics, University of Potsdam, Potsdam 14415, Germany
http://www.math.uni-bremen.de/zetem/DFG-Schwerpunkt/jahrestreffen07/skripte/Marwan.pdf
132. RECURRENCE PLOTS AND CROSS RECURRENCE PLOTS
http://www.recurrence-plot.tk
133. Legendre-Polynom
Wikipedia
http://de.wikipedia.org/wiki/Legendre-Polynom
134. Tschebyschow-Polynom
Wikipedia
http://de.wikipedia.org/wiki/Tschebyschow-Polynom
135. Sinc-Funktion
Wikipedia
http://de.wikipedia.org/wiki/Sinc-Funktion
136. Sigmoid Funktion
Wikipedia
http://de.wikipedia.org/wiki/Sigmoidfunktion
137. Gabor Funktion
Paul Bourke
http://paulbourke.net/miscellaneous/functions/
138. Peter de Jong Attractors
Paul Bourke
http://paulbourke.net/fractals/peterdejong/
139. Peter de Jong Attractors
Complexification
http://www.complexification.net/gallery/machines/peterdejong
140. Simple Attractors
Gallery of Mathematical and Generative Art
http://www.subblue.com/gallery/album/31
141. Simple Attractors
flickr
http://www.flickr.com/photos/subblue/sets/72157605272650927/detail/
142. Clifford Attractors
Paul Bourke
http://paulbourke.net/fractals/clifford/
143. A novel 3-D jerk chaotic system with three quadratic nonlinearities and its adaptive control
Sundarapandian Vaidyanathan
https://www.degruyter.com/view/j/acsc.2016.26.issue-1/acsc-2016-0002/acsc-2016-0002.xml
144. Adaptive Control Design for the Anti-synchronization of Novel 3-D Chemical Chaotic Reactor Systems
Sundarapandian Vaidyanathan
https://www.researchgate.net/publication/289124616_Adaptive_Control_Design_for_the_Anti-synchronization_of_Novel_3-D_Chemical_Chaotic_Reactor_Systems
145. A 3-D Novel Highly Chaotic System with Four Quadratic Nonlinearities, its Adaptive Control and Anti - Synchronization with Unknown Parameters
Sundarapandian Vaidyanathan
https://www.researchgate.net/publication/275671795_A_3-D_Novel_Highly_Chaotic_System_with_Four_Quadratic_Nonlinearities_its_Adaptive_Control_and_Anti-Synchronization_with_Unknown_Parameters
146. Theoretic and Numerical Study of a New Chaotic System
Congxu Zhu, Yuehua Liu, Ying Guo
https://www.researchgate.net/publication/220518115_Theoretic_and_Numerical_Study_of_a_New_Chaotic_System
147. Analysis, control, synchronization, and circuit design of a novel chaotic system
V.Sundarapandian, I.Pehlivan
http://www.sciencedirect.com/science/article/pii/S0895717711007333
148. New Strange Attractors for Discrete Dynamical Systems
Yogesh Joshi, Denis Blackmore
https://pdfs.semanticscholar.org/a041/01bd7ff88030cbd5b9914b78419a41074945.pdf
149. Visualizing the attraction of strange attractors
Matjaz Perc
https://pdfs.semanticscholar.org/9e59/c5cb456ee2a0282b32d3ee6fa6660d5347ff.pdf
150. Gauss iterated map
https://en.wikipedia.org/wiki/Gauss_iterated_map
151. Image Encryption using the Two-dimensional Logistic Chaotic Map
Yue Wu, Gelan Yang, Huixia Jin and Joseph P. Noonan
https://www.researchgate.net/publication/258660674_Image_encryption_using_the_two-dimensional_logistic_chaotic_map
152. Fluctuational escape from chaotic attractors in multistable systems
I. A. Khovanov, D. G. Luchinsky, P. V. E. McClintock and A. N. Silchenko
http://eprints.lancs.ac.uk/22891/1/chaoticescapePostPrint.pdf
153. The Cubic Henon Map
Oliver Knill
http://www.math.harvard.edu/archive/21b_fall_03/henon/index.html
154. Quasi-periodicity and mode-locking in Maynard Smith map
Hemanta Kumar Sarmah, Tapan Kumar Baishya, Debasish Bhattacharjee, Mridul Chandra Das
https://rspublication.com/ijst/dec13/4.pdf
155. Logistic Map
Wikipedia
https://de.wikipedia.org/wiki/Logistische_Gleichung
156. The Logistic Map
A. Peter Young
http://physics.ucsc.edu/~peter/242/logistic.pdf
157. Some reminiscences of our study of chaotic maps-2
mAnasa-taraMgiNI
https://manasataramgini.wordpress.com/2016/12/26/some-reminiscences-of-our-study-of-chaotic-maps-2/
158. ORDER AND CHAOS IN MULTI–DIMENSIONAL HAMILTONIAN SYSTEMS
Tassos BOUNTIS, Christos Antonopoulos and Vassileios Basios
http://www.math.upatras.gr/~phdsch11/wp-content/uploads/2011/07/Bountis-Patras-2-2011.pdf
159. Time–Evolving Statistics of Chaotic Orbits of Conservative Maps in the Context of the Central Limit Theorem
G. Ruiz, T. Bountis and C. Tsallis
https://arxiv.org/pdf/1106.6226.pdf
160. Hopalong
Martin Lanter – LanterSoft
http://www.lantersoft.ch/experiments/hopalong/
161. Ulam method for the Chirikov standard map
Klaus M. Frahm and Dima L. Shepelyansky
https://arxiv.org/pdf/1004.1349.pdf
162. A Glance at the Standard Map
Ryan Tobin
http://csc.ucdavis.edu/~chaos/courses/nlp/Projects2009/RyanTobin/A%20Glance%20at%20the%20Standard%20Map.pdf
163. Chaotic Harmony Search Algorithm with Different Chaotic Maps for Solving Assignment Problems
Osama Abdel-Raouf, Ibrahim El-henawy and Mohamed Abdel-Baset
https://pdfs.semanticscholar.org/80a3/06936989fba66e594d656a5c217668d7a4eb.pdf
164. A review of chaos-based firefly algorithms: Perspectives and research challenges
Iztok Fister Jr., Matjaz Perc, Salahuddin M. Kamal, Iztok Fister
https://www.semanticscholar.org/paper/A-review-of-chaos-based-firefly-algorithms-Perspec-Fister-Perc/af290c34308041492494535f9cf25cfc343f5902
165. The Sine Map
Jory Griffin
https://people.maths.bris.ac.uk/~macpd/ads/sine.pdf
166. Chaotic Image Encryption via Convex Sinusoidal Map
F. ABU-AMARA,I. ABDEL-QADER
http://www.wseas.org/multimedia/journals/signal/2013/095714-149.pdf
167. The Effects of Using Chaotic Map on Improving the Performance of Multiobjective Evolutionary Algorithms
Hui Lu, Xiaoteng Wang, Zongming Fei and Meikang Qiu
https://uknowledge.uky.edu/cgi/viewcontent.cgi?article=1000&context=cs_facpub
168. AN EFFICIENT CHARGED SYSTEM SEARCH USING CHAOS FOR GLOBAL OPTIMIZATION PROBLEMS
S. Talatahari, A. Kaveh, R. Sheikholeslami
https://www.researchgate.net/publication/257930892_An_efficient_charged_system_search_using_chaos_for_global_optimization_problems
169. Stability and Bifurcation in the H ´enon Map and its Generalizations
O. Ozgur Aybar, I. Kusbeyzi Aybar, and A. S. Hacinliyan
http://www.cmsim.eu/papers_pdf/october_2013_papers/5_CMSIM-Journal_2013_Aybar_etal_4_529-538.pdf
170. STUDY OF BIFURCATION AND HYPERBOLICITY IN DISCRETE DYNAMICAL SYSTEMS
L. M. SAHA, BHARTI AND R. K. MOHANTY
http://ijsts.shirazu.ac.ir/article_2160_1fd323f707f533a54b80992f185d7364.pdf
171. Chaos control in discrete population models (Harvesting and Dynamics)
Eduardo Liz
http://www.alsharawi.info/Forms/Talks/EduardoLizICDEA2013.pdf
172. Population Floors and the Persistence of Chaos in Ecological Models
Graeme D. Ruxton and Pejman Rohani
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.585.5840&rep=rep1&type=pdf
173. Role of logistic and Ricker’s maps in appearance of chaos in autonomous quadratic dynamical systems
Vasiliy Ye. Belozyorov and Svetlana A. Volkova
http://www.library.diit.edu.ua/bitstream/123456789/4799/1/Vasiliy%20Ye.%20Belozyorov.pdf
174. Chaos - Based Image Encryption Using an Improved Quadratic Chaotic Map
Noha Ramadan, Hossam Eldin H. Ahmed, Said E. Elkhamy, Fathi E. Abd El-Samie
http://article.sapub.org/10.5923.j.ajsp.20160601.01.html
175. Dynamics of a map with a power-law tail: Description of an order-to-chaos transition
V. Botella-Soler, J.A. Oteo and J. Ros
https://www.uv.es/bosovi/Documents/PosterVGH.pdf
176. Dynamics of a map with power-law tail
V. Botella-Soler, J.A. Oteo and J. Ros
https://arxiv.org/pdf/0812.4551.pdf
177. Dynamics of simple one-dimensional maps under perturbation
Somdatta Sinha and Parichay K. Das
https://www.researchgate.net/publication/257215672_Dynamics_of_simple_one-dimensional_maps_under_perturbation
178. Single Population Dynamics Under Migration
Ritesh Agarwal and Somdatta Sinha
http://ncnsd.org/proceedings/proceeding05/paper/146.pdf
179. NONLINEAR DYNAMICS AND CHAOS
STEVEN H. STROGATZ
http://www.hds.bme.hu/~fhegedus/Strogatz%20-%20Nonlinear%20Dynamics%20and%20Chaos.pdf
180. Attracted by (STRANGE) Attractors
Josef Böhm (ACDCA and DERIVE & TI-CAS User Group)
http://time2012.ut.ee/index_files/proceedings/present/P12paper.pdf
181. On multi-parametric bifurcations in a scalar piecewise-linear map
Viktor Avrutin and Michael Schanz
http://www.ist.uni-stuttgart.de/institut/mitarbeiter/PDFs_MA-Seiten/VA/2006_Nonlinearity_AS.pdf
182. A MINIMAL 2-D QUADRATIC MAP WITH QUASI-PERIODIC ROUTE TO CHAOS
ZERAOULIA ELHADJ, J. C. SPROTT
http://sprott.physics.wisc.edu/pubs/paper306.pdf
183. Cryptography Using Multiple Two-Dimensional Chaotic Maps
N.K. Pareek, Vinod Patidar, K.K. Sud
https://www.sciencedirect.com/science/article/pii/S100757040400084X
184. Squared sine logistic map
R. Egydio de Carvalho, Edson D. Leonel
http://www.rc.unesp.br/edleonel/papers/leonel112.pdf
185. Characterization of a Family of Cubic Dynamical Systems
Shan Kothari
http://www.bsu.edu/libraries/beneficencepress/mathexchange/08-01/CharacterizationofaFamilyofCubicDynamicalSystems.pdf
186. Cycles of the logistic map
Cheng Zhang
https://arxiv.org/pdf/1204.0546.pdf
187. A Business Cycle Model with Cubic Nonlinearity
Tönu Puu and Irina Sushko
http://www.jus.umu.se/digitalAssets/18/18981_cwp_47_02.pdf
188. Dynamics, Chaos, and Fractals (part 2): Dynamics of One-Parameter Families
Evan Dummit
https://math.la.asu.edu/~dummit/docs/dynamics_2_dynamics_of_one-parameter_families.pdf
189. Classifying and quantifying basins of attraction
J. C. Sprott and Anda Xiong
http://sprott.physics.wisc.edu/pubs/paper442.pdf
190. An example of a fully bounded chaotic sea that surrounds an infinite set of nested invariant tori
Zeraoulia Elhadj and J. C. Sprott
http://sprott.physics.wisc.edu/pubs/paper373.pdf
191. Distinguishing Noise from Chaos: Objective versus Subjective Criteria Using Horizontal Visibility Graph
Martín Gómez Ravetti, Laura C. Carpi, Bruna Amin Gonçalves, Alejandro C. Frery and Osvaldo A. Rosso
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4172653/
192. Statistical Analysis of Multiple Access Interference in Chaotic Spreading Sequence Based DS-CDMA Systems
A. Litvinenko, E. Bekeris
http://electronics.etfbl.net/journal/Vol21No1/xPaper_04.pdf
193. Deterministic Chaos
Heinz Georg Schuster and Wolfram Just
WILEY-VCH Verlag GmbH & Co. KGaA
194. Distinguishing Noise from Chaos
O. A. Rosso, H. A. Larrondo, M. T. Martin, A. Plastino and M. A. Fuentes
http://www3.fi.mdp.edu.ar/fc3/paperspdf/2007/PhysRevLett_99_154102.pdf
195. Introduction to the dynamics of piecewise smooth maps
Glendinning, Paul
http://eprints.maths.manchester.ac.uk/2455/1/Lecture_Notesv2.pdf
196. BIFURCATION DYNAMICS OF THREE-DIMENSIONAL SYSTEMS
PAUL E. PHILLIPSON and PETER SCHUSTER
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.437.4211&rep=rep1&type=pdf
197. Route to Chaos in Generalized Logistic Map
R. Rak and E. Rak
http://przyrbwn.icm.edu.pl/APP/PDF/127/a127z3ap20.pdf
198. New nonlinear CPRNG based on tent and logistic maps
Oleg Garasym, Ina Taralova, René Lozi
https://hal.inria.fr/hal-01170134/
199. High Density Nodes in the Chaotic Region of 1D Discrete Maps
George Livadiotis
200. Noise-induced transitions in a generalized logistic model with delay
Irina A. Bashkirtseva, Ekaterina D. Ekaterinchuk, Lev B. Ryashko
http://ceur-ws.org/Vol-1894/numd1.pdf
201. Visualization of Chaos for Finance Majors
Cornelis A. Los
http://www.kiv.zcu.cz/~vavra/mrf/CHAOS.PDF
202. PHY411 Lecture notes Part 5
Alice Quillen
http://astro.pas.rochester.edu/~aquillen/phy411/lecture5.pdf
203. Chapter 5 Two dimensional maps
Michael Cross
http://www.cmp.caltech.edu/~mcc/Chaos_Course/Lesson5/Maps2D.pdf
204. Spatio-temporal Phase Patterns in Coupled Chaotic Maps with Parameter Deviations
Masahiro Wada, Kiyoto Kitatsuji and Yoshifumi Nishio
http://www.ieice.org/proceedings/NOLTA2005/HTMLS/paper/5093.pdf
205. Parallel processing of chaos-based image encryption algorithms
Ashwin Raman
https://cloudfront.escholarship.org/dist/prd/content/qt6zc2n027/qt6zc2n027.pdf
206. A New Fast Image Encryption Scheme Based on 2D Chaotic Maps
Radu Eugen BORIGA, Ana Cristina DASCALESCU, and Adrian Viorel DIACONU
http://www.iaeng.org/IJCS/issues_v41/issue_4/IJCS_41_4_05.pdf
207. A NEW CHAOTIC BIDIMENSIONAL MAP SUITABLE FOR IMAGES ENCRYPTION
Radu Boriga
http://megabyte.utm.ro/en/articole/2011/Info/vol1/RaduBoriga.pdf
208. Weak chaos, infinite ergodic theory, and anomalous dynamics
Rainer Klages
https://arxiv.org/pdf/1507.04255.pdf
209. Text Encryption by Using One-Dimensional Chaos Generators and Nonlinear Equations
Akif Akgül, Sezgin Kacar, Burak Aricioglu,Ihsan Pehlivan
http://www.emo.org.tr/ekler/dddd67d7d8fc5ad_ek.pdf
210. Dynamic analyses, FPGA implementation and engineering applications of multi-butterfly chaotic attractors generated from generalised Sprott C system
QIANG LAI, XIAO-WEN ZHAO, KARTHIKEYAN RAJAGOPAL, GUANGHUI XU, AKIF AKGUL and EMRE GULERYUZ
http://www.ias.ac.in/article/fulltext/pram/090/01/0006
211. MIXING RATES AND LIMIT THEOREMS FOR RANDOM INTERMITTENT MAPS
WAEL BAHSOUN AND CHRISTOPHER BOSE
https://dspace.lboro.ac.uk/dspace-jspui/bitstream/2134/21030/1/random_intermittent2015_final.pdf
212. Asymptotically stable equilibriu m points in new chaotic systems
K. Casas-García,L. A. Quezada-Téllez, S. Carrillo-Moreno, J. J. Flores-Godoy, G. Fernández-Anaya
http://www.scielo.org.mx/pdf/ns/v8n16/2007-0705-ns-8-16-00041.pdf
213. Chaos and Structures in Geophysics and Astrophysics
Antonello Provenzale and Neil J. Balmforth
http://www.whoi.edu/cms/files/antonello_21476.pdf
214. Improved algorithm for image encryption based on DNA encoding and multi-chaotic maps
Qiang Zhang, Lili Liu, Xiaopeng Wei
https://www.sciencedirect.com/science/article/pii/S1434841113002124
215. A New Hybrid Chaotic Map and Its Application on Image Encryption and Hiding
Yang Cao
https://www.hindawi.com/journals/mpe/2013/728375/
216. Wolfram Demonstrations Project
Ikeda Attractor
https://demonstrations.wolfram.com/IkedaAttractor/
217. Belykh Map
Scholarpedia
http://www.scholarpedia.org/article/Belykh_map
218. Symbolic dynamics of Belykh-type maps
Denghui Li, Jianhua Xie
https://link.springer.com/article/10.1007/s10483-016-2080-9
219. Deterministic stochastic resonance in a piecewise linear chaotic map
Sitabhra Sinha and Bikas K. Chakrabarti
https://www.imsc.res.in/~sitabhra/papers/sinha_chak_pre_98.pdf
220. High-Feedback Operation of Power Electronic Converters
Zhanybai T. Zhusubaliyev, Erik Mosekilde, Alexey I. Andriyanov and Gennady Y. Mikhal’chenko
https://www.mdpi.com/2079-9292/2/2/113/htm
221. AN INTRODUCTION TO THE SYNCHRONIZATION OF CHAOTIC SYSTEMS: COUPLED SKEW TENT MAPS
Martin Hasler and Yuri Maistrenko
https://pdfs.semanticscholar.org/f5ad/2276bf7c5a38166cd26f292d1972918a037c.pdf
222. A Robust Hash Function Using Cross-Coupled Chaotic Maps with Absolute-Valued Sinusoidal Nonlinearity
Wimol San-Um, Warakorn Srichavengsup
https://www.researchgate.net/publication/292943459_A_Robust_Hash_Function_Using_Cross-Coupled_Chaotic_Maps_with_Absolute-Valued_Sinusoidal_Nonlinearity
223. Time{Evolving Statistics of Chaotic Orbits of Conservative Maps in the Context of the Central Limit Theorem
G. Ruiz, T. Bountis and C. Tsallis
https://www.researchgate.net/publication/263621423_TIME-EVOLVING_STATISTICS_OF_CHAOTIC_ORBITS_OF_CONSERVATIVE_MAPS_IN_THE_CONTEXT_OF_THE_CENTRAL_LIMIT_THEOREM
224. Chaotic dynamics exhibited by two-dimensional maps
J. Awrejcewicz and C.-H. Lamarque
http://212.191.87.54:1616/k16/awrejcewicz/publikacje/publ_pdf/PC066.pdf
225. BIFURCATION AND CHAOS IN THE TINKERBELL MAP
SHAOLIANG YUAN, TAO JIANG and ZHUJUN JING
https://www.researchgate.net/publication/268018955_Bifurcation_and_chaos_in_the_Tinkerbell_map
226. Tinkerbell Map
Wikipedia
https://en.wikipedia.org/wiki/Tinkerbell_map
227. Rulkov Map
Wikipedia
https://en.wikipedia.org/wiki/Rulkov_map
228. Bursting synchronization in non-locally coupled maps
J.C.A. de Pontes, R.L. Viana, S.R. Lopes, C.A.S. Batista, A.M. Batista
https://www.researchgate.net/publication/228903297_Bursting_synchronization_in_non-locally_coupled_maps
229. Phase synchronization of coupled bursting neurons and thegeneralized Kuramoto model
F. A. S. Ferrari, R. L. Viana, S. R. Lopes, and R. Stoop
https://www.researchgate.net/publication/272359088_Phase_synchronization_of_coupled_bursting_neurons_and_the_generalized_Kuramoto_model
230. Simulation of large scale cortical networks by individual neuron dynamics
G. Schmidt, G. Zamora-Lopez, J. Kurths
https://www.pik-potsdam.de/members/kurths/publikationen/2010/simulation-of-large-scale.pdf
231. Suppression of dynamics in coupled discrete systems in interaction with an extended environment
Snehal M. Shekatkar and G. Ambika
https://www.researchgate.net/publication/237082651_Suppression_of_dynamics_in_coupled_discrete_systems_in_interaction_with_an_extended_environment
232. The effects of synaptic time delay on motifs of chemically coupled Rulkov model neurons
Igor Franovic, Vladimir Miljkovic
https://www.researchgate.net/publication/222365314_The_effects_of_synaptic_time_delay_on_motifs_of_chemically_coupled_Rulkov_model_neurons
233. COUPLED LOGISTIC MAP: A REVIEW AND NUMERICAL FACTS
NEPTALI ROMERO, JESUS SILVA, AND RAMON VIVAS
https://arxiv.org/pdf/1905.12977v1.pdf
234. Chaotic Evaluations in a Modified Coupled Logistic Type Predator-Prey Model
L. M. Saha and Niteesh Sahni
http://www.m-hikari.com/ams/ams-2012/ams-137-140-2012/sahaAMS137-140-2012.pdf
235. Spatial Structure, Environmental Heterogeneity, and Population Dynamics: Analysis of the Coupled Logistic Map
Bruce E. Kendall, Gordon A. Fox
https://escholarship.org/content/qt359696wj/qt359696wj_noSplash_b8e5afe006bbe2c43b98a882cd266309.pdf
236. Coherence Properties of Coupled Chaotic Map Lattices
M.Janowicz andA.Orlowski
http://przyrbwn.icm.edu.pl/APP/PDF/120/a120z6ap55.pdf
237. CORRELATIONS OF COUPLED LOGISTIC MAPS
John D. Harrison
238. Exploration of topologies of coupled nonlinear maps (Chaos theory)
René Lozi
https://hal.archives-ouvertes.fr/hal-01336429/document
239. Coupled Logistic Map for Symbiotic Relations
Gyu-Seung Shin
240. Analytical Study of the Julia Set of a Coupled Generalized Logistic Map
Katsuhiko YOSHIDA and Satoru SAITO
https://arxiv.org/pdf/solv-int/9805001.pdf
241. A 3D Strange Attractor with a Distinctive Silhouette. The Butterfly Effect Revisited
Safieddine Bouali
https://arxiv.org/ftp/arxiv/papers/1311/1311.6128.pdf
242. Strange Attractor Morphogenesis by Sensitive Dependence on Initial Conditions
Safieddine Bouali
https://hal.archives-ouvertes.fr/hal-02276579/document
243. A Versatile Six-wing 3D Strange Attractor
Safieddine Bouali
https://hal.archives-ouvertes.fr/hal-02306636/document
244. STABILITY AND CHAOS IN NONLINEAR DYNAMICAL SYSTEMS
BRNO UNIVERSITY OF TECHNOLOGY
https://www.vut.cz/www_base/zav_prace_soubor_verejne.php?file_id=175032
245. Symmetric Time-Reversible Flows with a Strange Attractor
J. C. SprotT
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.998.7887&rep=rep1&type=pdf
246.

247.


[zurück] [Inhaltsverzeichnis] [vor]