[zurück] | 4. Literatur |
[vor] |
1. |
Chaos blog - JLS 3-cells CNN chaotic system http://jlswbs.blogspot.de/2012/04/3-cells-cnn.html |
2. |
Chaos blog - JLS Arneodo chaotic system http://jlswbs.blogspot.de/2012/03/arneodo.html |
3. |
Chaos blog - JLS Sprott-Linz S chaotic attractor http://jlswbs.blogspot.de/2012/03/sprott-linz-s.html |
4. |
Chaos blog - JLS Sprott-Linz R chaotic attractor http://jlswbs.blogspot.de/2011/10/sprott-r.html |
5. |
Chaos blog - JLS Sprott-Linz Q chaotic attractor http://jlswbs.blogspot.de/2012/03/sprott-linz-q.html |
6. |
Chaos blog - JLS Sprott-Linz P chaotic attractor http://jlswbs.blogspot.de/2012/03/sprott-linz-p.html |
7. |
Chaos blog - JLS Sprott-Linz O chaotic attractor http://jlswbs.blogspot.de/2012/03/sprott-linz-o.html |
8. |
Chaos blog - JLS Sprott-Linz N chaotic attractor http://jlswbs.blogspot.de/2011/10/sprott-n.html |
9. |
Chaos blog - JLS Sprott-Linz M chaotic attractor http://jlswbs.blogspot.de/2012/03/sprott-linz-m.html |
10. |
Chaos blog - JLS Sprott-Linz L chaotic attractor http://jlswbs.blogspot.de/2012/03/sprott-linz-l.html |
11. |
Chaos blog - JLS Sprott-Linz K chaotic attractor http://jlswbs.blogspot.de/2012/03/sprott-linz-k.html |
12. |
Chaos blog - JLS Sprott-Linz J chaotic attractor http://jlswbs.blogspot.de/2012/02/sprott-linz-j.html |
13. |
Chaos blog - JLS Sprott-Linz I chaotic attractor http://jlswbs.blogspot.de/2012/02/sprott-linz-i.html |
14. |
Chaos blog - JLS Sprott-Linz H chaotic attractor http://jlswbs.blogspot.de/2012/02/sprott-linz-h.html |
15. |
Chaos blog - JLS Sprott-Linz G chaotic attractor http://jlswbs.blogspot.de/2012/02/sprott-linz-g.html |
16. |
Chaos blog - JLS Sprott-Linz F chaotic attractor http://jlswbs.blogspot.de/2012/02/sprott-linz-f.html |
17. |
Chaos blog - JLS Sprott-Linz E chaotic attractor http://jlswbs.blogspot.de/2011/10/sprott-e.html |
18. |
Chaos blog - JLS Sprott-Linz D chaotic attractor http://jlswbs.blogspot.de/2011/10/sprott-d.html |
19. |
Chaos blog - JLS Sprott-Linz C chaotic attractor http://jlswbs.blogspot.de/2012/02/sprott-linz-c.html |
20. |
A New Three-Scroll Unified Chaotic System Coined Lin Pan, Wuneng Zhou, Jian’an Fang, Dequan Li International Journal of Nonlinear Science, Vol.10(2010) No.4,pp.462-474 http://www.internonlinearscience.org/upload/papers/20110618025420887.pdf |
21. |
Chaos blog - JLS Sprott-Linz B chaotic attractor http://jlswbs.blogspot.de/2012/02/sprott-linz-b.html |
22. |
Chaos blog - JLS Sprott-Linz A chaotic attractor http://jlswbs.blogspot.de/2012/02/linz-sprott.html |
23. |
A NEW CHAOTIC SYSTEM AND BEYOND: THE GENERALIZED LORENZ-LIKE SYSTEM JINHU LÜ, GUANRONG CHEN, DAIZHAN CHENG International Journal of Bifurcation and Chaos, Vol. 14, No. 5 (2004) 1507-1537 http://lsc.amss.ac.cn/~ljh/04LCC.pdf |
24. |
Chaos blog - JLS Thomas cyclically symetric attractor http://jlswbs.blogspot.de/2011/09/thomas.html |
25. |
Chaos blog - JLS Chen-Celikovsky chaotic attractor http://jlswbs.blogspot.de/2011/10/chen-celikovsky.html |
26. |
A NEW CHAOTIC ATTRACTOR COINED JINHU LÜ, GUANRONG CHEN International Journal of Bifurcation and Chaos, Vol. 12, No. 3 (2002) 659-661 http://lsc.amss.ac.cn/~ljh/02LC.pdf |
27. |
Chaos blog - JLS Shimizu-Morioka chaotic attractor http://jlswbs.blogspot.de/2011/10/shimizu-morioka.html |
28. |
1980 The Shimizu-Morioka system T. Shimizu & N. Morioka ATOMOSYD http://www.atomosyd.net/spip.php?article75 |
29. |
Chaos blog - JLS Nose-Hoover chaotic attractor http://jlswbs.blogspot.de/2011/10/nose-hoover.html |
30. |
Chaos blog - JLS Strizhak-Kawczynski chaotic oscillator http://jlswbs.blogspot.de/2011/10/strizhak-kawczynski.html |
31. |
Slow manifold structure and the emergence of mixed-mode oscillations Andrei Goryachev, Peter Strizhak, Raymond Kapral J. Chem. Phys., Vol. 107, No. 8, 22 August 1997 http://www.biology.ed.ac.uk/research/groups/goryachev/Papers/jcp97.pdf |
32. |
Chaos blog - JLS Rayleigh-Benard chaotic oscillator http://jlswbs.blogspot.de/2011/10/rayleigh-benard.html |
33. |
Chaos blog - JLS Sakarya chaotic attractor http://jlswbs.blogspot.de/2011/10/sakarya.html |
34. |
Chaos blog - JLS Aizawa chaotic attractor http://jlswbs.blogspot.de/2011/10/aizawa.html |
35. |
Chaos blog - JLS Newton-Leipnik attractor http://jlswbs.blogspot.de/2011/10/newton-leipnik.html |
36. |
Adaptive control and synchronization of the Newton-Leipnik systems Xuedi Wang, Chao Ge Journal of Information and Computing Science, Vol. 3, No. 4, 2008, pp. 281-289 http://www.worldacademicunion.com/journal/1746-7659JIC/jicvol3no4paper04.pdf |
37. |
Chaos blog - JLS Burke-Shaw chaotic attractor http://jlswbs.blogspot.de/2011/10/burke-shaw.html |
38. |
1981 The Burke & Shaw system Bill Burke & Robert Shaw ATOMOSYD http://www.atomosyd.net/spip.php?article33 |
39. |
Chaos blog - JLS Rucklidge chaotic attractor http://jlswbs.blogspot.de/2011/10/rucklidge.html |
40. |
Description of strange attractors using invariants of phase-plane DUMITRU DELEANU http://www.wseas.us/e-library/conferences/2011/Iasi/DYMANOW/DYMANOW-17.pdf |
41. |
Chaos blog - JLS Halvorsen chaotic attractor http://jlswbs.blogspot.de/2011/10/halvorsen.html |
42. |
SPROTT / lorenz EC JOURNAL . Winter 2008 http://sprott.physics.wisc.edu/lorenz.pdf |
43. |
Chaos blog - JLS Hadley chaotic circulation http://jlswbs.blogspot.de/2011/10/hadley.html |
44. |
A Novel Strange Attractor with a Stretched Loop Safieddine Bouali University of Tunis, Management Institute, Department of Quantitative Methods & Economics http://arxiv.org/ftp/arxiv/papers/1204/1204.0045.pdf |
45. |
Feedback loop in extended Van der Pol`s equation applied to an economic model of cycles Safieddine Bouali International Journal of Bifurkation and Chaos, Vol. 9, No. 4 (1999) 745 - 756 http://s1.e-monsite.com/2009/08/29/80052934bouali-ijbc-pdf.pdf |
46. |
Chaos Control and Projective Synchronization of a Chaotic Chen-Lee System Yin Li, Biao Li1 CHINESE JOURNAL OF PHYSICS VOL. 47, NO. 3 JUNE 2009 |
47. |
Poincar´e sections for a new three-dimensional toroidal attractor Christophe Letellier & Robert Gilmore http://www.physics.drexel.edu/~bob/Papers/Torochaos.pdf |
48. |
A New Finance Chaotic Attractor Guoliang Cai,Juanjuan Huang International Journal of Nonlinear Science, Vol. 3 (2007) No. 3, pp. 213-220 http://www.internonlinearscience.org/upload/papers/20110308103218810.pdf |
49. |
Tamari attractor Wikipedia http://en.wikipedia.org/wiki/Tamari_attractor |
50. |
Tamari attractor Ben Tamari http://www.bentamari.com/attractors.html |
51. |
Computer Simulation on the Gumowski-Mira Transformation Kenji OTSUBO, Masakazu WASHIDA, Takao ITOH, Kazuo KATSUURA and Masaki HAYASHI http://www.scipress.org/journals/forma/pdf/1502/15020121.pdf |
52. |
Mira Fractal Wolfram MathWorld http://mathworld.wolfram.com/MiraFractal.html |
53. |
Attractors: Nonstrange to Chaotic Robert L. V. Taylor; The College of Wooster http://www.siam.org/students/siuro/vol4/S01079.pdf |
54. |
FractMus Math Gustavo Diaz-Jerez http://www.gustavodiazjerez.com/gdj/?cat=15 |
55. |
Shilnikov's Saddle-Node Bifurcation Sparrow, Colin; Glendinning, Paul HP Labs Technical Reports http://www.hpl.hp.com/techreports/96/HPL-BRIMS-96-07.html |
56. |
Parameter-sweeping techniques for temporal dynamics of neuronal systems: Hindmarsh-Rose model Roberto Barrio, Andrey Shilnikov http://131.96.40.35/hm_chaos.pdf |
57. |
Hindmarsh–Rose model Wikipedia http://en.wikipedia.org/wiki/Hindmarsh%E2%80%93Rose_model |
58. |
Determining the flexibility of regular and chaotic attractors Marko Marhl, Matjaz Perc Chaos, Solitons and Fractals 28 (2006) 822–833 http://www.matjazperc.com/publications/ChaosSolitonsFractals_28_822.pdf |
59. |
Short Option S15: Chaos, Chance and Predictability Prof. P. L. Read and Dr M. R. Allen The University of Oxford Department of Physics http://www.atm.ox.ac.uk/user/read/chaos/lect5.pdf |
60. |
On the Dynamics of a New Simple 2-D Rational Discrete Mapping Elhadj, Zeraoulia; Sprott, J. C. http://sprott.physics.wisc.edu/pubs/paper310.htm |
61. |
A NEW CHAOTIC ATTRACTOR FROM 2D DISCRETE MAPPING VIA BORDER-COLLISION PERIOD-DOUBLING SCENARIO Elhadj, Zeraoulia http://emis.matem.unam.mx/journals/HOA/DDNS/Volume2005_3/238.pdf |
62. |
Cellular Neural Networks, Multi-Scroll Chaos And Synchronization Müstak E. Yalcin, Johan A. K. Suykens, Joos Vandewalle World Scientific Series on Nonlinear Science Series A: Volume 50 http://books.google.de/books/about/Cellular_Neural_Networks_Multi_Scroll_Ch.html?hl=de&id=E_Nk5UQoE94C |
63. |
A New Four-Scroll Chaotic Attractor Consisted of Two-Scroll Transient Chaotic and Two-Scroll Ultimate Chaotic Yuhua Xu, Bing Li, Yuling Wang, Wuneng Zhou and Jian-an Fang Hindawi Publishing Corporation; Mathematical Problems in Engineering; Volume 2012, Article ID 438328, 12 pages http://www.hindawi.com/journals/mpe/2012/438328/ref/ |
64. |
A family of n-scroll hyperchaotic attractors and their realization Simin Yu, Jinhu Lü, Guanrong Chen Physics Letters A 364 (2007) 244–251 http://lsc.amss.ac.cn/~ljh/07YLC.pdf |
65. |
Invariant Sets for Windows: Resonance Structures, Attractors, Fractals and Patterns Albert D. Morozov, Timothy N. Dragunov, Olga V. Malysheva World Scientific Series on Nonlinear Science, Series a http://books.google.de/books |
66. |
Chaos in Circuits and Systems Guanrong Chen, Tetsushi Ueta, Tetsishi Ueta World Scientific Series on Nonlinear Science, Series B http://books.google.de/books |
67. |
A Two-dimensional Discrete Mapping with Multifold Chaotic Attractors Zeraoulia Elhadj, J. C. Sprott Electronic Journal of Theoretical Physics; EJTP 5, No. 17 (2008) 111-124 http://sprott.physics.wisc.edu/pubs/paper308.htm |
68. |
Fractals, Chaos Paul Bourke http://paulbourke.net/fractals/ |
69. |
Herrmann, Dietmar Algorithmen für Fraktale und Chaostheorie Addison Wesley, 1994 ISBN 3-89319-633-1 |
70. |
Positive Knots and Robinson's Attractor Michael C. Sullivan, Southern Illinois University Carbondale http://opensiuc.lib.siu.edu/math_articles/74/ |
71. |
Chaoscope.org 3D strange attractors rendering software http://www.chaoscope.org/manual.htm |
72. |
Study on the dynamical behaviors of a two-dimensional discrete system Yinghui Gao, Bing Liu Nonlinear Analysis 70 (2009) 4209-4216 http://n-vasegh.ir/Chaos/Ushiki_map.pdf |
73. |
Ergodic theory of chaos and strange attractors J.-P. Eckmann, D. Ruelle http://www.ihes.fr/~ruelle/PUBLICATIONS/%5B81%5D.pdf |
74. |
Chua's Equation With Cubic Nonlinearity (1996) Anshan Huang , Ladislav Pivka , Chai Wah Wu , Martin Franz Electronics Research Laboratory and Department of Electrical Engineering and Computer Sciences University of California, Berkeley http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.53.4863 |
75. |
Attractors of discrete dynamical systems Discrete Dynamical Systems and Nonlinear Difference Equations http://www.discretedynamics.net/Attractors/attractors.htm |
76. |
Popcorn Softology Tutorial http://softology.com.au/tutorials/attractors2d/tutorial.htm |
77. |
Pickover Attractors FractInt http://www.nahee.com/spanky/www/fractint/pickover.html |
78. |
Analysis, nonlinear control, and chaos generator circuit of another strange chaotic system Ihsan PEHLIVAN, Zhouchao WEI Turk J Elec Eng & Comp Sci http://journals.tubitak.gov.tr/havuz/elk-1103-14.pdf |
79. |
BIFURCATION ANALYSIS OF THE QI 3-D FOUR-WING CHAOTIC SYSTEM Yanxia Sun, Guoyuan Qi, Zenghui Wang, Barend Jacobus van Wyk ACTA PHYSICA POLONICA B, Vol. 41 (2010) http://th-www.if.uj.edu.pl/acta/vol41/pdf/v41p0767.pdf |
80. |
THE DESIGN OF ADAPTIVE CONTROLLER AND SYNCHRONIZER FOR QI-CHEN SYSTEM WITH UNKNOWN PARAMETERS Sundarapandian Vaidyanathan International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.2, No.1, February 2012 http://airccse.org/journal/ijcsea/papers/2112ijcsea08.pdf |
81. |
A new four-dimensional chaotic system Chen Yong and Yang Yun-Qing Chin. Phys. B Vol. 19, No. 12 (2010) 120510 http://faculty.ecnu.edu.cn/picture/article/202/38/44/0161a10f4b1f8813a86cb2bcb6df/66150550-4823-4061-a3ad-bfd2026325d4.pdf.x |
82. |
Highly Complex Chaotic System with Piecewise Linear Nonlinearity and Compound Structures Wimol San-Um, Banlue Srisuchinwong JOURNAL OF COMPUTERS, VOL. 7, NO. 4, APRIL 2012 http://ojs.academypublisher.com/index.php/jcp/article/download/jcp070410411047/4679 |
83. |
A Novel Three Dimension Autonomous Chaotic System with a Quadratic Exponential Nonlinear Term Fei Yu, Chunhua Wang ETASR - Engineering, Technology & Applied Science Research Vol. 2, o. 2, 2012, 209-215 http://www.etasr.com/index.php/ETASR/article/download/86/119 |
84. |
Controllable V-Shape Multi-Scroll Butter y Attractor: System and Circuit Implementation M. AFFAN ZIDAN, A. G. RADWAN, K. N. SALAMA JOURNAL OF COMPUTERS, VOL. 7, NO. 4, APRIL 2012 http://archive.kaust.edu.sa/kaust/bitstream/10754/235271/1/V_Shape_Final.pdf |
85. |
Designing modified projective synchronization for fractional order chaotic systems Runzi Luo, Shucheng Deng, Zhengmin Wei http://litis.univ-lehavre.fr/iccsaPeople/media/data/CSFOS-05.pdf |
86. |
Automatic synthesis of 2D-n-scrolls chaotic systems by behavioral modeling J. M. Munoz-Pacheco, E. Tlelo-Cuautle Journal of Applied Research and Technology, 2009, Vol. 7, 5-14 http://www.doaj.org/doaj?func=abstract&id=865075 |
87. |
ACTIVE CONTROLLER DESIGN FOR THE GENERALIZED PROJECTIVE SYNCHRONIZATION OF THREE-SCROLL CHAOTIC SYSTEMS Sarasu Pakiriswamy and Sundarapandian Vaidyanathan International Journal of Advanced Information Technology (IJAIT) Vol. 2, No.1, February 2012 http://airccse.org/journal/IJAIT/papers/2112ijait04.pdf |
88. |
n-DOUBLE SCROLL HYPERCUBES IN 1-D CNNs J. A. K. SUYKENS, L. O. CHUA International Journal of Bifurcation and Chaos, Vol. 7, No. 8 (1997) 1873-1885 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.128.6086 |
89. |
Multiscroll in coupled Lorenz oscillators S.K.Dana, B.K. Singh, S.Chakraborty, J.Kurths, G.Osipov, R.C.Yadav, P.K.Roy, C.-K.Hu National Conference on Nonlinear Systems and Dynamics (NCNSD) http://www.ncnsd.org/proceedings/proceeding08/paper/10.pdf |
90. |
A Family of n-Scroll Attractors from a Generalized Chua's Circuit Johan A. K. Suykens , Anshan Huang , Leon O. Chua National Conference on Nonlinear Systems and Dynamics (NCNSD) http://130.203.133.150/viewdoc/similar;jsessionid=E6383228578535C0E22853418AC14CC9?doi=10.1.1.7.3191&type=cc |
91. |
Synchronization of Identical and Non-identical 4-D Chaotic Systems via Lyapunov Direct Method A. N. Njah, O.D. Sunday International Journal of Nonlinear Science Vol.8(2009) No.1,pp. 3-10 http://www.worldacademicunion.com/journal/1749-3889-3897IJNS/IJNSVol08No1Paper01.pdf |
92. |
MULTISCROLL IN COUPLED DOUBLE SCROLL TYPE OSCILLATORS SYAMAL KUMAR DANA, BRAJENDRA K. SINGH, SATYABRATA.CHAKRABORTY, RAM CHANDRA YADAV, JÜRGEN KURTHS, GREGORY V. OSIPOV, PRODYOT KUMAR ROY, CHIN-KUN HU International Journal of Bifurcation and Chaos, Vol. 18, No. 10 (2008) 2965-2980 http://www.phys.sinica.edu.tw/~statphys/publications/2008_full_text/S_K_Dana_IJBC_18_2965(2008).pdf |
93. |
A Generic Framework for Robust Image Encryption Using Multiple Chaotic Flows Gelli MBSS Kumar and V. Chandrasekaran INTERNATIONAL JOURNAL OF COMPUTATIONAL COGNITION (HTTP://WWW.IJCC.US), VOL. 8, NO. 3, SEPTEMBER 2010 www.yangsky.us/ijcc/pdf/ijcc83/IJCC823.pdf |
94. |
Dynamical Systems and Chaos Henk Broer and Floris Takens Johann Bernoulli Institute for Mathematics and Computer Science University of Groningen http://www.math.rug.nl/~broer/pdf/nova.pdf |
95. |
Chaos topology Robert Gilmore et al. (2008), Scholarpedia, 3(7):4592 http://www.scholarpedia.org/article/Chaos_topology |
96. |
Chaos blog - JLS ACT chaotic attractor http://jlswbs.blogspot.de/2011/10/act.html |
97. |
Chaos blog - JLS Lorenz-Mod1 chaotic attractor http://jlswbs.blogspot.de/2011/11/lorenz-mod1.html |
98. |
Chaos blog - JLS Lorenz-Mod2 chaotic attractor http://jlswbs.blogspot.de/2011/11/lorenz-mod2.html |
99. |
Irregular Attractors VADIM S. ANISHCHENKO and GALINA I. STRELKOVA Discrete Dynamics in Nature and Society, Vol. 2, pp. 53-72 http://www.emis.de/journals/HOA/DDNS/2/153.pdf |
100. |
THE SYNCHRONIZATION OF TWO FOUR-DIMENSIONAL CHAOTIC SYSTEMS WITH CUBIC NONLINEARITIES Servilia OANCEA, Ioan GROSU, Andrei Victor OANCEA Lucrari Stiintifice – vol. 53, Nr. 2/2010, seria Agronomie http://www.revagrois.ro/PDF/2010_2_50.pdf |
101. |
On bifurcations of the Lorenz attractor in the Shimizu-Morioka model Andrey L. Shil'nikov Physica D 62 (1993) 338-346 http://saddle.gsu.edu/research/shimizu.pdf |
102. |
A New 3D Four-Wing Chaotic System with Cubic Nonlinearity and Its Circuit Implementation LIU Xing-Yun CHIN. PHYS. LETT. Vol. 26, No. 9 (2009) 090504 http://cpl.iphy.ac.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=41688 |
103. |
A novel four-wing chaotic attractor generated from a three-dimensional quadratic autonomous system Dong En-Zeng, Chen Zai-Ping, Chen Zeng-Qiang, and Yuan Zhu-Zhi Chinese Physics B, Vol 18 No 7, July 2009 http://iopscience.iop.org/1674-1056/18/7/010 |
104. |
ADAPTIVE HYBRID CHAOS SYNCHRONIZATION OF LORENZ-STENFLO AND QI 4-D CHAOTIC SYSTEMS WITH UNKNOWN PARAMETERS Sundarapandian Vaidyanathan International Journal in Foundations of Computer Science & Technology,Vol. 2, No.1, January 2012 http://airccse.org/journal/ijfcst/papers/2112ijfcst02.pdf |
105. |
GLOBAL CHAOS SYNCHRONIZATION OF HYPERCHAOTIC QI AND HYPERCHAOTIC JHA SYSTEMS BY ACTIVE NONLINEAR CONTROL Sundarapandian Vaidyanathan International Journal of Information Sciences and Techniques (IJIST) Vol.2, No.3, May 2012 http://airccse.org/journal/IS/papers/2312ijist07.pdf |
106. |
Cat Map Wikipedia http://en.wikipedia.org/wiki/Arnold%27s_cat_map |
107. |
On Solving Coullet System by Differential Transformation Method Mehmet Merdan, Ahmet Gökdogan and Vedat Suat Ertürk Cankaya University Journal of Science and Engineering Volume 8 (2011), No. 1, 111-121 http://cujse.cankaya.edu.tr/archive/8_1/09_cujse_10051.pdf |
108. |
A 3-D four-wing attractor and its analysis Zenghui Wang, Yanxia Sun, Barend Jacobus van Wyk, Guoyuan Qi and Michael Antonie van Wyk Brazilian Journal of Physics, vol. 39, no. 3, September, 2009 http://www.sbfisica.org.br/bjp/files/v39_547.pdf |
109. |
Tent Map Wikipedia http://en.wikipedia.org/wiki/Tent_map |
110. |
The Coupled Logistic Map: A Simple Model for the Effects of Spatial Heterogeneity on Population Dynamics ALUN L. LLOYD J. theor. Biol. (1995) 173, 217-230 http://www4.ncsu.edu/~allloyd/pdf_files/jtb_95.pdf |
111. |
ON THE INTEGRABILITY OF A MUTHUSWAMY-CHUA SYSTEM JAUME LLIBRE, CLAUDIA VALLS Grup de Sistemes Dinàmics de la UAB http://www.gsd.uab.cat/cgi-bin/download?ID=LliVal2011n.abstract.pdf-d9656c68d387b201c7063e7bda9aaabe.pdf;OD=LliVal2011n.abstract.pdf |
112. |
TOPOLOGICAL ANALYSIS OF CHAOTIC SOLUTION OF A THREE-ELEMENT MEMRISTIVE CIRCUIT JEAN-MARC GINOUX, CHRISTOPHE LETELLIER, LEON O. CHUA International Journal of Bifurcation and Chaos, Vol. 20, No. 11 (2010) 3819–3827 http://www.researchgate.net/publication/220272267_Topological_Analysis_of_Chaotic_Solution_of_a_Three-Element_Memristive_Circuit/file/79e414ff1f564b1262.pdf |
113. |
Chaotic Modelling and Simulation: Analysis of Chaotic Models, Attractors and Forms Christos H. Skiadas, Charilaos Skiadas CRC Press, ISBN-10: 142007900X |
114. |
Java 1.1 Applet for the Sine Attractor Home Page Barry G. Adams Laurentian University http://www.cs.laurentian.ca/badams/Attractors2D/SineApplet.html |
115. |
Two Dimensional Maps - Equations Chaos on the Web: Physics 161: Introduction to Chaos Prof. Michael Cross, California Institute of Technology http://www.cmp.caltech.edu/~mcc/Chaos_Course/Map2D_docs/Equations.html |
116. |
Stability Properties of Nonhyperbolic Chaotic Attractors under Noise Suso Kraut and Celso Grebogi http://arxiv.org/pdf/nlin/0411064 |
117. |
Bifurcation Analysis, Chaos and Control in the Burgers Mapping E. M. ELabbasy, H. N. Agiza, H. EL-Metwally, A. A. Elsadany International Journal of Nonlinear Science, Vol.4(2007) No.3,pp.171-185 http://www.worldacademicunion.com/journal/1749-3889-3897IJNS/IJNSVol4No3Paper02.pdf |
118. |
Antiphase synchronism in chaotic systems Ling-Yuan Cao and Ying-Cheng Lai PHYSICAL REVIEW E, VOLUME 58, NUMBER 1 JULY 1998 http://chaos1.la.asu.edu/~yclai/papers/PRE_98_CL.pdf |
119. |
Intermittent Strange Nonchaotic Attractors in Quasiperiodically Forced Systems Woochang Lim and Sang-Yoon Kim Journal of the Korean Physical Society, Vol. 44, No. 3, March 2004, pp. 514-517 http://www.kps.or.kr/jkps/downloadPdf.asp?articleuid=%7B0C8761CA-188C-4867-88CF-D7E164BEE044%7D |
120. |
Fractalization of a torus as a strange nonchaotic attractor Takashi Nishikawa and Kunihiko Kaneko PHYSICAL REVIEW E VOLUME 54, NUMBER 6 DECEMBER 1996 http://chaos.c.u-tokyo.ac.jp/papers/pr/nishikawa.pdf |
121. |
Dynamics of Small Perturbations of Orbits on a Torus in a Quasiperiodically Forced 2D Dissipative Map Alexey Yu. Jalnine, Sergey P. Kuznetsov, Andrew H. Osbaldestin http://arxiv.org/abs/nlin/0506047 |
122. |
A GENERALIZED 3-D FOUR-WING CHAOTIC SYSTEM ZENGHUI WANG, GUOYUAN QI, YANXIA SUN, MICHAEL ANTONIE VAN WYK, BAREND JACOBUS VAN WYK Int. J. Bifurcation Chaos 19, 3841 (2009) http://www.worldscientific.com/doi/abs/10.1142/S0218127409025171 |
123. |
AN AMPLITUDE-ADJUSTABLE FOUR-WING CHAOTIC ATTRACTOR AND ITS CIRCUIT DESIGN CHUNBIAO LI, IHSAN PEHLIVAN, J.C. SPROTT http://sprott.physics.wisc.edu/pubs/paper393.pdf |
124. |
The Basic Properties of Zhou’s Attractor Ummu Atiqah Mohd Roslan, Zabidin Salleh and Adem Kilicman Proceeding of ICORAFSS 2009, 2-4 June 2009, The ZON Regency Hotel, Johor Bahru, Malaysia http://zabidin.blog.umt.edu.my/files/2009/08/Zhous-Attractor.pdf |
125. |
Non-existence of Shilnikov Chaos in Continuous-time Systems Zeraoulia Elhadj and J. C. Sprott http://sprott.physics.wisc.edu/pubs/paper357.pdf |
126. |
Ontologies: On the Concepts of: Possibility, Possible, “Acaso”, Aleatorial and Chaos Maria Odete Madeira, Carlos Pedro Gonçalves http://fraclab.saclay.inria.fr/works/miscellaneous/Ontologies%20On%20the%20Concepts%20of%20Possibility-%20Possible-%20Acaso-%20Aleatorial%20and%20Chaos.pdf |
127. |
Untersuchung der Klimavariabilität in NW Argentinien mit Hilfe der quantitativen Analyse von Recurrence Plots Diplomarbeit Norbert Marwan Lehrstuhl Theoretische Physik Institut für Physik und Astronomie der Universität Potsdam http://www.recurrence-plot.tk/Diplomarbeit.Marwan.pdf |
128. |
Rekurrenzplot Wikipedia http://de.wikipedia.org/wiki/Rekurrenzplot |
129. |
Introduction to Recurrence Plots in Matlab Professor Janet Wiles School of Information Technology and Electrical Engineering University of Queensland http://tdlc.ucsd.edu/events/sfi/Janet_Wiles_Recurrence_Plots_Lab.pdf |
130. |
Recurrence Quantification Analysis of Nonlinear Dynamical Systems Charles L. Webber, Jr. and Joseph P. Zbilut http://www.nsf.gov/sbe/bcs/pac/nmbs/chap2.pdf |
131. |
Recurrence plots for the analysis of complex systems Norbert Marwan, M. Carmen Romano, Marco Thiel, Jürgen Kurths Nonlinear Dynamics Group, Institute of Physics, University of Potsdam, Potsdam 14415, Germany http://www.math.uni-bremen.de/zetem/DFG-Schwerpunkt/jahrestreffen07/skripte/Marwan.pdf |
132. |
RECURRENCE PLOTS AND CROSS RECURRENCE PLOTS http://www.recurrence-plot.tk |
133. |
Legendre-Polynom Wikipedia http://de.wikipedia.org/wiki/Legendre-Polynom |
134. |
Tschebyschow-Polynom Wikipedia http://de.wikipedia.org/wiki/Tschebyschow-Polynom |
135. |
Sinc-Funktion Wikipedia http://de.wikipedia.org/wiki/Sinc-Funktion |
136. |
Sigmoid Funktion Wikipedia http://de.wikipedia.org/wiki/Sigmoidfunktion |
137. |
Gabor Funktion Paul Bourke http://paulbourke.net/miscellaneous/functions/ |
138. |
Peter de Jong Attractors Paul Bourke http://paulbourke.net/fractals/peterdejong/ |
139. |
Peter de Jong Attractors Complexification http://www.complexification.net/gallery/machines/peterdejong |
140. |
Simple Attractors Gallery of Mathematical and Generative Art http://www.subblue.com/gallery/album/31 |
141. |
Simple Attractors flickr http://www.flickr.com/photos/subblue/sets/72157605272650927/detail/ |
142. |
Clifford Attractors Paul Bourke http://paulbourke.net/fractals/clifford/ |
143. |
A novel 3-D jerk chaotic system with three quadratic nonlinearities and its adaptive control Sundarapandian Vaidyanathan https://www.degruyter.com/view/j/acsc.2016.26.issue-1/acsc-2016-0002/acsc-2016-0002.xml |
144. |
Adaptive Control Design for the Anti-synchronization of Novel 3-D Chemical Chaotic Reactor Systems Sundarapandian Vaidyanathan https://www.researchgate.net/publication/289124616_Adaptive_Control_Design_for_the_Anti-synchronization_of_Novel_3-D_Chemical_Chaotic_Reactor_Systems |
145. |
A 3-D Novel Highly Chaotic System with Four Quadratic Nonlinearities, its Adaptive Control and Anti - Synchronization with Unknown Parameters Sundarapandian Vaidyanathan https://www.researchgate.net/publication/275671795_A_3-D_Novel_Highly_Chaotic_System_with_Four_Quadratic_Nonlinearities_its_Adaptive_Control_and_Anti-Synchronization_with_Unknown_Parameters |
146. |
Theoretic and Numerical Study of a New Chaotic System Congxu Zhu, Yuehua Liu, Ying Guo https://www.researchgate.net/publication/220518115_Theoretic_and_Numerical_Study_of_a_New_Chaotic_System |
147. |
Analysis, control, synchronization, and circuit design of a novel chaotic system V.Sundarapandian, I.Pehlivan http://www.sciencedirect.com/science/article/pii/S0895717711007333 |
148. |
New Strange Attractors for Discrete Dynamical Systems Yogesh Joshi, Denis Blackmore https://pdfs.semanticscholar.org/a041/01bd7ff88030cbd5b9914b78419a41074945.pdf |
149. |
Visualizing the attraction of strange attractors Matjaz Perc https://pdfs.semanticscholar.org/9e59/c5cb456ee2a0282b32d3ee6fa6660d5347ff.pdf |
150. |
Gauss iterated map https://en.wikipedia.org/wiki/Gauss_iterated_map |
151. |
Image Encryption using the Two-dimensional Logistic Chaotic Map Yue Wu, Gelan Yang, Huixia Jin and Joseph P. Noonan https://www.researchgate.net/publication/258660674_Image_encryption_using_the_two-dimensional_logistic_chaotic_map |
152. |
Fluctuational escape from chaotic attractors in multistable systems I. A. Khovanov, D. G. Luchinsky, P. V. E. McClintock and A. N. Silchenko http://eprints.lancs.ac.uk/22891/1/chaoticescapePostPrint.pdf |
153. |
The Cubic Henon Map Oliver Knill http://www.math.harvard.edu/archive/21b_fall_03/henon/index.html |
154. |
Quasi-periodicity and mode-locking in Maynard Smith map Hemanta Kumar Sarmah, Tapan Kumar Baishya, Debasish Bhattacharjee, Mridul Chandra Das https://rspublication.com/ijst/dec13/4.pdf |
155. |
Logistic Map Wikipedia https://de.wikipedia.org/wiki/Logistische_Gleichung |
156. |
The Logistic Map A. Peter Young http://physics.ucsc.edu/~peter/242/logistic.pdf |
157. |
Some reminiscences of our study of chaotic maps-2 mAnasa-taraMgiNI https://manasataramgini.wordpress.com/2016/12/26/some-reminiscences-of-our-study-of-chaotic-maps-2/ |
158. |
ORDER AND CHAOS IN MULTI–DIMENSIONAL HAMILTONIAN SYSTEMS Tassos BOUNTIS, Christos Antonopoulos and Vassileios Basios http://www.math.upatras.gr/~phdsch11/wp-content/uploads/2011/07/Bountis-Patras-2-2011.pdf |
159. |
Time–Evolving Statistics of Chaotic Orbits of Conservative Maps in the Context of the Central Limit Theorem G. Ruiz, T. Bountis and C. Tsallis https://arxiv.org/pdf/1106.6226.pdf |
160. |
Hopalong Martin Lanter – LanterSoft http://www.lantersoft.ch/experiments/hopalong/ |
161. |
Ulam method for the Chirikov standard map Klaus M. Frahm and Dima L. Shepelyansky https://arxiv.org/pdf/1004.1349.pdf |
162. |
A Glance at the Standard Map Ryan Tobin http://csc.ucdavis.edu/~chaos/courses/nlp/Projects2009/RyanTobin/A%20Glance%20at%20the%20Standard%20Map.pdf |
163. |
Chaotic Harmony Search Algorithm with Different Chaotic Maps for Solving Assignment Problems Osama Abdel-Raouf, Ibrahim El-henawy and Mohamed Abdel-Baset https://pdfs.semanticscholar.org/80a3/06936989fba66e594d656a5c217668d7a4eb.pdf |
164. |
A review of chaos-based firefly algorithms: Perspectives and research challenges Iztok Fister Jr., Matjaz Perc, Salahuddin M. Kamal, Iztok Fister https://www.semanticscholar.org/paper/A-review-of-chaos-based-firefly-algorithms-Perspec-Fister-Perc/af290c34308041492494535f9cf25cfc343f5902 |
165. |
The Sine Map Jory Griffin https://people.maths.bris.ac.uk/~macpd/ads/sine.pdf |
166. |
Chaotic Image Encryption via Convex Sinusoidal Map F. ABU-AMARA,I. ABDEL-QADER http://www.wseas.org/multimedia/journals/signal/2013/095714-149.pdf |
167. |
The Effects of Using Chaotic Map on Improving the Performance of Multiobjective Evolutionary Algorithms Hui Lu, Xiaoteng Wang, Zongming Fei and Meikang Qiu https://uknowledge.uky.edu/cgi/viewcontent.cgi?article=1000&context=cs_facpub |
168. |
AN EFFICIENT CHARGED SYSTEM SEARCH USING CHAOS FOR GLOBAL OPTIMIZATION PROBLEMS S. Talatahari, A. Kaveh, R. Sheikholeslami https://www.researchgate.net/publication/257930892_An_efficient_charged_system_search_using_chaos_for_global_optimization_problems |
169. |
Stability and Bifurcation in the H ´enon Map and its Generalizations O. Ozgur Aybar, I. Kusbeyzi Aybar, and A. S. Hacinliyan http://www.cmsim.eu/papers_pdf/october_2013_papers/5_CMSIM-Journal_2013_Aybar_etal_4_529-538.pdf |
170. |
STUDY OF BIFURCATION AND HYPERBOLICITY IN DISCRETE DYNAMICAL SYSTEMS L. M. SAHA, BHARTI AND R. K. MOHANTY http://ijsts.shirazu.ac.ir/article_2160_1fd323f707f533a54b80992f185d7364.pdf |
171. |
Chaos control in discrete population models (Harvesting and Dynamics) Eduardo Liz http://www.alsharawi.info/Forms/Talks/EduardoLizICDEA2013.pdf |
172. |
Population Floors and the Persistence of Chaos in Ecological Models Graeme D. Ruxton and Pejman Rohani http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.585.5840&rep=rep1&type=pdf |
173. |
Role of logistic and Ricker’s maps in appearance of chaos in autonomous quadratic dynamical systems Vasiliy Ye. Belozyorov and Svetlana A. Volkova http://www.library.diit.edu.ua/bitstream/123456789/4799/1/Vasiliy%20Ye.%20Belozyorov.pdf |
174. |
Chaos - Based Image Encryption Using an Improved Quadratic Chaotic Map Noha Ramadan, Hossam Eldin H. Ahmed, Said E. Elkhamy, Fathi E. Abd El-Samie http://article.sapub.org/10.5923.j.ajsp.20160601.01.html |
175. |
Dynamics of a map with a power-law tail: Description of an order-to-chaos transition V. Botella-Soler, J.A. Oteo and J. Ros https://www.uv.es/bosovi/Documents/PosterVGH.pdf |
176. |
Dynamics of a map with power-law tail V. Botella-Soler, J.A. Oteo and J. Ros https://arxiv.org/pdf/0812.4551.pdf |
177. |
Dynamics of simple one-dimensional maps under perturbation Somdatta Sinha and Parichay K. Das https://www.researchgate.net/publication/257215672_Dynamics_of_simple_one-dimensional_maps_under_perturbation |
178. |
Single Population Dynamics Under Migration Ritesh Agarwal and Somdatta Sinha http://ncnsd.org/proceedings/proceeding05/paper/146.pdf |
179. |
NONLINEAR DYNAMICS AND CHAOS STEVEN H. STROGATZ http://www.hds.bme.hu/~fhegedus/Strogatz%20-%20Nonlinear%20Dynamics%20and%20Chaos.pdf |
180. |
Attracted by (STRANGE) Attractors Josef Böhm (ACDCA and DERIVE & TI-CAS User Group) http://time2012.ut.ee/index_files/proceedings/present/P12paper.pdf |
181. |
On multi-parametric bifurcations in a scalar piecewise-linear map Viktor Avrutin and Michael Schanz http://www.ist.uni-stuttgart.de/institut/mitarbeiter/PDFs_MA-Seiten/VA/2006_Nonlinearity_AS.pdf |
182. |
A MINIMAL 2-D QUADRATIC MAP WITH QUASI-PERIODIC ROUTE TO CHAOS ZERAOULIA ELHADJ, J. C. SPROTT http://sprott.physics.wisc.edu/pubs/paper306.pdf |
183. |
Cryptography Using Multiple Two-Dimensional Chaotic Maps N.K. Pareek, Vinod Patidar, K.K. Sud https://www.sciencedirect.com/science/article/pii/S100757040400084X |
184. |
Squared sine logistic map R. Egydio de Carvalho, Edson D. Leonel http://www.rc.unesp.br/edleonel/papers/leonel112.pdf |
185. |
Characterization of a Family of Cubic Dynamical Systems Shan Kothari http://www.bsu.edu/libraries/beneficencepress/mathexchange/08-01/CharacterizationofaFamilyofCubicDynamicalSystems.pdf |
186. |
Cycles of the logistic map Cheng Zhang https://arxiv.org/pdf/1204.0546.pdf |
187. |
A Business Cycle Model with Cubic Nonlinearity Tönu Puu and Irina Sushko http://www.jus.umu.se/digitalAssets/18/18981_cwp_47_02.pdf |
188. |
Dynamics, Chaos, and Fractals (part 2): Dynamics of One-Parameter Families Evan Dummit https://math.la.asu.edu/~dummit/docs/dynamics_2_dynamics_of_one-parameter_families.pdf |
189. |
Classifying and quantifying basins of attraction J. C. Sprott and Anda Xiong http://sprott.physics.wisc.edu/pubs/paper442.pdf |
190. |
An example of a fully bounded chaotic sea that surrounds an infinite set of nested invariant tori Zeraoulia Elhadj and J. C. Sprott http://sprott.physics.wisc.edu/pubs/paper373.pdf |
191. |
Distinguishing Noise from Chaos: Objective versus Subjective Criteria Using Horizontal Visibility Graph Martín Gómez Ravetti, Laura C. Carpi, Bruna Amin Gonçalves, Alejandro C. Frery and Osvaldo A. Rosso https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4172653/ |
192. |
Statistical Analysis of Multiple Access Interference in Chaotic Spreading Sequence Based DS-CDMA Systems A. Litvinenko, E. Bekeris http://electronics.etfbl.net/journal/Vol21No1/xPaper_04.pdf |
193. |
Deterministic Chaos Heinz Georg Schuster and Wolfram Just WILEY-VCH Verlag GmbH & Co. KGaA |
194. |
Distinguishing Noise from Chaos O. A. Rosso, H. A. Larrondo, M. T. Martin, A. Plastino and M. A. Fuentes http://www3.fi.mdp.edu.ar/fc3/paperspdf/2007/PhysRevLett_99_154102.pdf |
195. |
Introduction to the dynamics of piecewise smooth maps Glendinning, Paul http://eprints.maths.manchester.ac.uk/2455/1/Lecture_Notesv2.pdf |
196. |
BIFURCATION DYNAMICS OF THREE-DIMENSIONAL SYSTEMS PAUL E. PHILLIPSON and PETER SCHUSTER http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.437.4211&rep=rep1&type=pdf |
197. |
Route to Chaos in Generalized Logistic Map R. Rak and E. Rak http://przyrbwn.icm.edu.pl/APP/PDF/127/a127z3ap20.pdf |
198. |
New nonlinear CPRNG based on tent and logistic maps Oleg Garasym, Ina Taralova, René Lozi https://hal.inria.fr/hal-01170134/ |
199. |
High Density Nodes in the Chaotic Region of 1D Discrete Maps George Livadiotis |
200. |
Noise-induced transitions in a generalized logistic model with delay Irina A. Bashkirtseva, Ekaterina D. Ekaterinchuk, Lev B. Ryashko http://ceur-ws.org/Vol-1894/numd1.pdf |
201. |
Visualization of Chaos for Finance Majors Cornelis A. Los http://www.kiv.zcu.cz/~vavra/mrf/CHAOS.PDF |
202. |
PHY411 Lecture notes Part 5 Alice Quillen http://astro.pas.rochester.edu/~aquillen/phy411/lecture5.pdf |
203. |
Chapter 5 Two dimensional maps Michael Cross http://www.cmp.caltech.edu/~mcc/Chaos_Course/Lesson5/Maps2D.pdf |
204. |
Spatio-temporal Phase Patterns in Coupled Chaotic Maps with Parameter Deviations Masahiro Wada, Kiyoto Kitatsuji and Yoshifumi Nishio http://www.ieice.org/proceedings/NOLTA2005/HTMLS/paper/5093.pdf |
205. |
Parallel processing of chaos-based image encryption algorithms Ashwin Raman https://cloudfront.escholarship.org/dist/prd/content/qt6zc2n027/qt6zc2n027.pdf |
206. |
A New Fast Image Encryption Scheme Based on 2D Chaotic Maps Radu Eugen BORIGA, Ana Cristina DASCALESCU, and Adrian Viorel DIACONU http://www.iaeng.org/IJCS/issues_v41/issue_4/IJCS_41_4_05.pdf |
207. |
A NEW CHAOTIC BIDIMENSIONAL MAP SUITABLE FOR IMAGES ENCRYPTION Radu Boriga http://megabyte.utm.ro/en/articole/2011/Info/vol1/RaduBoriga.pdf |
208. |
Weak chaos, infinite ergodic theory, and anomalous dynamics Rainer Klages https://arxiv.org/pdf/1507.04255.pdf |
209. |
Text Encryption by Using One-Dimensional Chaos Generators and Nonlinear Equations Akif Akgül, Sezgin Kacar, Burak Aricioglu,Ihsan Pehlivan http://www.emo.org.tr/ekler/dddd67d7d8fc5ad_ek.pdf |
210. |
Dynamic analyses, FPGA implementation and engineering applications of multi-butterfly chaotic attractors generated from generalised Sprott C system QIANG LAI, XIAO-WEN ZHAO, KARTHIKEYAN RAJAGOPAL, GUANGHUI XU, AKIF AKGUL and EMRE GULERYUZ http://www.ias.ac.in/article/fulltext/pram/090/01/0006 |
211. |
MIXING RATES AND LIMIT THEOREMS FOR RANDOM INTERMITTENT MAPS WAEL BAHSOUN AND CHRISTOPHER BOSE https://dspace.lboro.ac.uk/dspace-jspui/bitstream/2134/21030/1/random_intermittent2015_final.pdf |
212. |
Asymptotically stable equilibriu m points in new chaotic systems K. Casas-García,L. A. Quezada-Téllez, S. Carrillo-Moreno, J. J. Flores-Godoy, G. Fernández-Anaya http://www.scielo.org.mx/pdf/ns/v8n16/2007-0705-ns-8-16-00041.pdf |
213. |
Chaos and Structures in Geophysics and Astrophysics Antonello Provenzale and Neil J. Balmforth http://www.whoi.edu/cms/files/antonello_21476.pdf |
214. |
Improved algorithm for image encryption based on DNA encoding and multi-chaotic maps Qiang Zhang, Lili Liu, Xiaopeng Wei https://www.sciencedirect.com/science/article/pii/S1434841113002124 |
215. |
A New Hybrid Chaotic Map and Its Application on Image Encryption and Hiding Yang Cao https://www.hindawi.com/journals/mpe/2013/728375/ |
216. |
Wolfram Demonstrations Project Ikeda Attractor https://demonstrations.wolfram.com/IkedaAttractor/ |
217. |
Belykh Map Scholarpedia http://www.scholarpedia.org/article/Belykh_map |
218. |
Symbolic dynamics of Belykh-type maps Denghui Li, Jianhua Xie https://link.springer.com/article/10.1007/s10483-016-2080-9 |
219. |
Deterministic stochastic resonance in a piecewise linear chaotic map Sitabhra Sinha and Bikas K. Chakrabarti https://www.imsc.res.in/~sitabhra/papers/sinha_chak_pre_98.pdf |
220. |
High-Feedback Operation of Power Electronic Converters Zhanybai T. Zhusubaliyev, Erik Mosekilde, Alexey I. Andriyanov and Gennady Y. Mikhal’chenko https://www.mdpi.com/2079-9292/2/2/113/htm |
221. |
AN INTRODUCTION TO THE SYNCHRONIZATION OF CHAOTIC SYSTEMS: COUPLED SKEW TENT MAPS Martin Hasler and Yuri Maistrenko https://pdfs.semanticscholar.org/f5ad/2276bf7c5a38166cd26f292d1972918a037c.pdf |
222. |
A Robust Hash Function Using Cross-Coupled Chaotic Maps with Absolute-Valued Sinusoidal Nonlinearity Wimol San-Um, Warakorn Srichavengsup https://www.researchgate.net/publication/292943459_A_Robust_Hash_Function_Using_Cross-Coupled_Chaotic_Maps_with_Absolute-Valued_Sinusoidal_Nonlinearity |
223. |
Time{Evolving Statistics of Chaotic Orbits of Conservative Maps in the Context of the Central Limit Theorem G. Ruiz, T. Bountis and C. Tsallis https://www.researchgate.net/publication/263621423_TIME-EVOLVING_STATISTICS_OF_CHAOTIC_ORBITS_OF_CONSERVATIVE_MAPS_IN_THE_CONTEXT_OF_THE_CENTRAL_LIMIT_THEOREM |
224. |
Chaotic dynamics exhibited by two-dimensional maps J. Awrejcewicz and C.-H. Lamarque http://212.191.87.54:1616/k16/awrejcewicz/publikacje/publ_pdf/PC066.pdf |
225. |
BIFURCATION AND CHAOS IN THE TINKERBELL MAP SHAOLIANG YUAN, TAO JIANG and ZHUJUN JING https://www.researchgate.net/publication/268018955_Bifurcation_and_chaos_in_the_Tinkerbell_map |
226. |
Tinkerbell Map Wikipedia https://en.wikipedia.org/wiki/Tinkerbell_map |
227. |
Rulkov Map Wikipedia https://en.wikipedia.org/wiki/Rulkov_map |
228. |
Bursting synchronization in non-locally coupled maps J.C.A. de Pontes, R.L. Viana, S.R. Lopes, C.A.S. Batista, A.M. Batista https://www.researchgate.net/publication/228903297_Bursting_synchronization_in_non-locally_coupled_maps |
229. |
Phase synchronization of coupled bursting neurons and thegeneralized Kuramoto model F. A. S. Ferrari, R. L. Viana, S. R. Lopes, and R. Stoop https://www.researchgate.net/publication/272359088_Phase_synchronization_of_coupled_bursting_neurons_and_the_generalized_Kuramoto_model |
230. |
Simulation of large scale cortical networks by individual neuron dynamics G. Schmidt, G. Zamora-Lopez, J. Kurths https://www.pik-potsdam.de/members/kurths/publikationen/2010/simulation-of-large-scale.pdf |
231. |
Suppression of dynamics in coupled discrete systems in interaction with an extended environment Snehal M. Shekatkar and G. Ambika https://www.researchgate.net/publication/237082651_Suppression_of_dynamics_in_coupled_discrete_systems_in_interaction_with_an_extended_environment |
232. |
The effects of synaptic time delay on motifs of chemically coupled Rulkov model neurons Igor Franovic, Vladimir Miljkovic https://www.researchgate.net/publication/222365314_The_effects_of_synaptic_time_delay_on_motifs_of_chemically_coupled_Rulkov_model_neurons |
233. |
COUPLED LOGISTIC MAP: A REVIEW AND NUMERICAL FACTS NEPTALI ROMERO, JESUS SILVA, AND RAMON VIVAS https://arxiv.org/pdf/1905.12977v1.pdf |
234. |
Chaotic Evaluations in a Modified Coupled Logistic Type Predator-Prey Model L. M. Saha and Niteesh Sahni http://www.m-hikari.com/ams/ams-2012/ams-137-140-2012/sahaAMS137-140-2012.pdf |
235. |
Spatial Structure, Environmental Heterogeneity, and Population Dynamics: Analysis of the Coupled Logistic Map Bruce E. Kendall, Gordon A. Fox https://escholarship.org/content/qt359696wj/qt359696wj_noSplash_b8e5afe006bbe2c43b98a882cd266309.pdf |
236. |
Coherence Properties of Coupled Chaotic Map Lattices M.Janowicz andA.Orlowski http://przyrbwn.icm.edu.pl/APP/PDF/120/a120z6ap55.pdf |
237. |
CORRELATIONS OF COUPLED LOGISTIC MAPS John D. Harrison |
238. |
Exploration of topologies of coupled nonlinear maps (Chaos theory) René Lozi https://hal.archives-ouvertes.fr/hal-01336429/document |
239. |
Coupled Logistic Map for Symbiotic Relations Gyu-Seung Shin |
240. |
Analytical Study of the Julia Set of a Coupled Generalized Logistic Map Katsuhiko YOSHIDA and Satoru SAITO https://arxiv.org/pdf/solv-int/9805001.pdf |
241. |
A 3D Strange Attractor with a Distinctive Silhouette. The Butterfly Effect Revisited Safieddine Bouali https://arxiv.org/ftp/arxiv/papers/1311/1311.6128.pdf |
242. |
Strange Attractor Morphogenesis by Sensitive Dependence on Initial Conditions Safieddine Bouali https://hal.archives-ouvertes.fr/hal-02276579/document |
243. |
A Versatile Six-wing 3D Strange Attractor Safieddine Bouali https://hal.archives-ouvertes.fr/hal-02306636/document |
244. |
STABILITY AND CHAOS IN NONLINEAR DYNAMICAL SYSTEMS BRNO UNIVERSITY OF TECHNOLOGY https://www.vut.cz/www_base/zav_prace_soubor_verejne.php?file_id=175032 |
245. |
Symmetric Time-Reversible Flows with a Strange Attractor J. C. SprotT https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.998.7887&rep=rep1&type=pdf |
246. |
|
247. |
|
[zurück] | [Inhaltsverzeichnis] | [vor] |